Multi-Coloured

Second EditionPart-B

INTER DISCIPALIANARY TOPICS FOR CHEMICAL SCIENCE QUESTION BANK For Higher Competitive Exams CSIR-NET/JRF, GATE, TIFR

Nanoscience and Technology Catalyst and Green Chemistry Medicinal Chemistry Supramolecular Chemistry Environmental Chemistry

Energy Audit Services

288 03

00.00k

Acid Free Paper Under All Right Reserved
 Multidimensional Educational Technical
 K.M.AMISH & Research Society

Multidimensional Publications

INTER DISCIPALIANARY TOPICS FOR CHEMICAL SCIENCE QUESTION BANK KOOKLET

STRUCTURACTURAL PROPERTISE & HISTRY BASED

FOR CSIR, NET, JRF.GATE, TIFR

(Junior Research Fellowship and Eligibility for Lectureship) Many Other Competitive Exams

ISO

K. M. AMISH & S. AZEEM AHAMAD (M. Sc., Physical Chem. M. Phil., Nanochemistry)

Written by

(Pre.Ph.D. Awarded Nanotechnologist)

(President)

Multidimensional Educational Technical & Research Society. Director of Multidimensional Publications Editor of Multidimensional Nanoscience Magazine

Multidimensional Publications

Regd.Office: Buil. No.- 05, Lane No.-03 Kanchana Biharimarg,
Adil Agar Kalyanpur Eden Enclave Near Jagrani Hospital Ring Road (226022) Lucknow.
Projet office: Multidimensional Publications – Flat No. 413, 4th Floor,Block -B
Mumtaz Apartment Kursi Road Near Sport College Eden Enclave Pin 226026. Lucknow U.P.,
Branch office: 03-A / 11- Jia Sarai, Arvind Photoshop,Near I.I.T New Delhi Just Career Endevour (110016).
Vsit Us : www.multidpublication.in
www.multidpublication.blogspot.com
E – mail : multidpublication86@gmail.com
Cont.: 05222730211, +919918422098.

About Author

- > President of Multidimensional Educational Technical and Research Society
- Director of Multidimensional Publications
- Editor Chef. Of Multidimensional Nanoscience Magazine
- Secretary of Sarvodaya Helth and Environmental Society
- Member of The Indian Science Congress Association
- Member of VIBHA Vigyan Bharti (Swadeshi Science Movement)
- Member of Regional Science City Lucknor (Ministry of Culture) Gov. of India
- Member of Indragandhi Nachhatrasala Lucknow
- Member of Robotics Society Intigral University Lucknow
- Member of CSIR. News / Samachar
- Member of Vigyan Pragati Magazine NISCAIR (CSIR India)
- Member of Dream Magazine Vigyan Prasar (Ministry of Science & Technology) Gov. of India
- Member of Awishkar Magazine N.R.D.C (DSIR) (Ministry of Science&Technology) Gov.of India
- Member of DRDO Samachar (Ministry of Defense) Gov. of India

Participations:-

- > Indian International Science Festival (I.I.S.F) I.I.T New Delhi 2016.
- ▶ Indian International Science Festival (I.I.S.F) Indra Gandhi Pratishthan Lucknow 2018.
- > One dozen plus National International Seminars / Conferences
- > Organizer of Seminars / Conference of Education, Technique and Research
- Having many more Copy Wright Materials like Charts, Books and Research Papers / Articles etc.

नोट:- इस पुस्तक की केर्ता व विक्रेता के द्वारा बिक्री से प्राप्त कुल राशि का 25% प्रतिशत राशि का प्रयोग शिक्षा तकनीकी एवं अनुसंधान की गुणवत्ता हेतु व बहुआयामी प्रकाशक की पुस्तकालय के शुद्धिकरण हेतु देय होगी।

INTER DISCIPLINARY TOPIC FOR CHEMICAL SCIENCE For CSIR, NET, JRF, GATE, TIFR (QUESTION BANK)

(Junior Research Fellowship and Eligibility for Lectureship) By

K. M. AMISH & SYED AZEEM AHAMAD

(M. Sc., Physical Chem. M. Phil., Nanochemistry)(Pre.Ph.D. Awarded) (Nanotechnologist)(President)Multidimensional Educational Technical & Research Society.Director of Multidimensional Publications.Editor of Multidimensional Nanoscience Magazine.

©ALL RIGHT STRICTLY RESERVED

 \odot ACID FREE PAPER

No part of this book may be re-produced, stored in a retrieval system or distributed in any form or by any means, electronic, mechanical, photocopying recording, scanning, web or otherwise without the written permission of the author or (publisher).
 Multidimensional Publication has obtained all the information in the book from the sources believed to be reliable and true.

Second Edition Part-B: 2020

Book code:-MDP-IDTCS002

Trice:- 200 Rs Only

Printed at:- JSM- Groups Lucknow U.P.
 Oublished by:- Multidimensional Publications

Multidimensional Publications

Regd. Office: Buil. No.-05, Lane No.-03, Kanchanabihari Marg, Adil Nagar Eden Enclave Kalyanpur, Near Jahrani Hospital Ring Road Pin (226022) Lucknow U.P. Project office: – Flat No. 413, 4th Floor, Block –B Mumtaz Apartment Kursi Road near Sport College Eden Enclave Pin 226026.Lucknow U.P. Branch office: 03-A /11- Jia-Sarai, Arvind Photoshop, Near I.I.T. New Delhi Just Career Endeavor (110022). E-mail: multidpublication86@gmail.com Visit Us: www.multidpublication.in www.multidpublication.blogspot.com Cont.:- 05222730211, +919918422098

The Greek Alphabet for you

Letter	Name
Αα	alpha, άλφα
Ββ	beta, βήτα
Γγ	gamma, γάμμα
Δδ	delta, δέλτα
Εε	epsilon, έψιλον
Zζ	zeta, ζήτα
Ηη	eta, ήτα
Θθ	theta, θήτα
Iι	iota, ιώτα
Кκ	kappa, κάππα
Λλ	lambda, λάμδα
Μμ	mu, μυ

Letter	Name
Νv	nu, vu
Ξξ	xi, ξι
O 0	omicron, όμικρον
Ππ	pi, πι
Ρρ	rho, ρώ
$\Sigma \sigma / \varsigma^{[note 1]}$	sigma, σ ίγμα
Ττ	tau, ταυ
Υυ	upsilon, ύψιλον
Φφ	phi, φι
Χχ	chi, χι
Ψψ	psi, ψι
Ωω	omega, ωμέγα

Fundamental constant for you

Constant	Symbol	Value
\checkmark acceleration due to gravity	g	9.8 m s ⁻²
✓ atomic mass unit	amu, m _u or u	1.66 x10 ⁻²⁷ kg
✓ Avogadro's Number	N	6.022 x 10 ²³ mol ⁻¹
✓ Bohr radius	ao	0.529 x 10 ⁻¹⁰ m
✓ Boltzmann constant	k	1.38 x 10 ⁻²³ J K ⁻¹
\checkmark electron charge to mass ratio	-e/m _e	-1.7588 x 10 ¹¹ C kg ⁻¹
\checkmark electron classical radius	r _e	2.818 x 10 ⁻¹⁵ m
\checkmark electron mass energy (J)	m _e c ²	8.187 x 10 ⁻¹⁴ J
✓ electron mass energy (MeV)	m _e c ²	0.511 MeV
\checkmark electron rest mass	m _e	9.109 x 10 ⁻³¹ kg
✓ Faraday constant	F	9.649 x 10 ⁴ C mol ⁻¹
\checkmark fine-structure constant	α	7.297 x 10 ⁻³
\checkmark gas constant	R	8.314 J mol ⁻¹ K ⁻¹
\checkmark gravitational constant	G	6.67 x 10 ⁻¹¹ Nm ² kg ⁻²
✓ neutron mass energy (J)	m _n c ²	1.505 x 10 ⁻¹⁰ J
✓ neutron mass energy (MeV)	m _n c ²	939.565 MeV
✓ neutron rest mass	m _n	1.675 x 10 ⁻²⁷ kg
\checkmark neutron-electron mass ratio	m _n /m _e	1838.68
\checkmark neutron-proton mass ratio	m _n /m _p	1.0014
✓ permeability of a vacuum	μ _o	4π x 10 ⁻⁷ N A ⁻²
✓ permittivity of a vacuum	ε _o	8.854 x 10 ⁻¹² F m ⁻¹
✓ Planck constant	h	6.626 x 10 ⁻³⁴ J s
✓ proton mass energy (J)	m _p c ²	1.503 x 10 ⁻¹⁰ J
✓ proton mass energy (MeV)	m _p c ²	938.272 MeV
✓ proton rest mass	m _p	1.6726 x 10 ⁻²⁷ kg
✓ proton-electron mass ratio	m _p /m _e	1836.15
✓ Rydberg constant	r_{∞}	1.0974 x 10 ⁷ m ⁻¹
✓ speed of light in vacuum	С	2.9979 x 10 ⁸ m/s

REFACE his book has been written with an aim to provide a source for *CSIR*, *NET*, *JRF*, students of Chemical Science opting five disciplinary topics as an open elective and is exactly based on the syllabus.

The objective of this book, *Interdisciplinary Topics* is to introduce various topics according to the syllabus outline in easy and effective way. According to the topics of syllabus the whole book is divided into five parts in total. The first part covers to "*Chemistry in Nanoscience and Technology*" and part second is "*Catalyst and Green Chemistry*" and part third is on "*Medicinal Chemistry*" and part four is on "*Supramolecular Chemistry*" and last part five is on "*Environmental Chemistry*"

The main features of this book are it is in **structure and properties based** and future application on different topic which is given in this book in **multicolored**. It is strictly based on the syllabus of C.S.I.R., NET, JRF students for Chemical Science. That book is text as well as competitive simply, coherent and completed. All topics in this book are in detailed in simple language, attached with external knowledge side of the pages and having different question marks which is required to understanding of the topic and after completed chapters giving large exercise of related topics.The main focus of writer of the book Illustration and diagram are used in almost in dimensional based effective way to explain difficult images or diagrams of the topics. Offers the readers a multitude of actual and potential systems for planning, designing and implementing various emerging technologies.

The final form of this book is the outcome of an extensive survey of related literature than our knowledge. We have tried to consult the best available sources of information in respect to various topics discussed. We sincerely hope that the book will go a long way to satisfy the long felt need of students for a friendly book on Chemical science.

We gratefully acknowledge the assistance and constructive comments of Institutes or colleges and Research students during the preparation of this book. *Any suggestions for improvement of the book are welcome and will be gratefully acknowledged.*

K. M. AMISH

Some exciting gifts are up for grabs with Multidimensional Publications

For the Beginners free gifts 1000 Rs. as well as get offer for membership of the Multidimensional Educational Technical & Research Society.

DEAR READERS-

By now you must have gone through this book in the entirety. So Multidimensional publications invite your assessment on this title with absolute impartiality and candid observation. After all, we publishers blindly depend on your benchmarking. Respects please fill up the open spaces below with CAPITAL LETTERS.

You may add some extra sheets of paper if the space provided is not sufficient for you.

- > What are the important topics of your syllabus which are not adequately covered in this book?
- In which part and on what topics the treatment of the subject-matter by the author is not satisfactory and why?
- Have you come across the typos, factual inaccuracies, inconsistencies, and other forms of mistake in the book? If yes, then please specify the mistake and page numbers.
- Name top three books on the same subject / topics which, in your consideration, are better than this book. Could you provide some reasons? Your 1st Preference:......

Your 2nd Preference:

- Your 3rd Preference:
- Any suggestion to improve the quality of illustration, diagrams, structure, data etc.?
- > How did you like the cover design, multidimensional images and multicolours?
- Which terminology would you like to in this book?
- Suggestion for further improvement of production- standard

\triangleright	Who recommended you this book
	Teachers Friends Parents Booksellers Librarians Publishers
\triangleright	How you know about this book
	By Teachers By Coaching By Booksellers By Newspapers By Publisher
\triangleright	Name of the person who has recommended this book
	Designation:
	Address:
	Contact No.:
	E-mail:
≻	Name and address of the booksellers from whom you have purchased this book
	· · · · ·
\triangleright	Name and address of the library where you would like to find the book
\triangleright	Your name, contact No., e-mail, and complete postal address
	A few other titles published by us that would like to read

.....

The best assessment will be rewarded half – yearly. The award will be in the form of Multidimensional Publications, as decided by chairperson of publisher amounting to Rs. 1000 /- only and get offer for membership of the Multidimensional Educational Technical & Research Society By President of the Society.

ABOUT THE BOOK:- We are extremely delighted to present this version of Chemical Sciences which will cover the total need of the student preparing for CSIR-UGC (NET) examination for selection of scholars for Junior Research Fellowship of CSIR and UGC and for determining the eligibility for Lectureship in the Colleges and Universities of India. Our major objective is also to develop confidence among the candidates who are taking competitive examination in the field related to Chemical Sciences after Postgraduation by providing them solved objective as well as short descriptive type questions which covers both fundamental and practical aspects of the topic. This book is designed to satisfy the challenging requirements of NET (CSIR-UGC), GATE, SET, ONGC, IARI, BARC and Ph.D. Entrance of Various Indian University. The final form of this book is the outcome of an extensive survey of related literature than our knowledge. We have tried to consult the best available sources of information in respect to various topics discussed. We sincerely hope that the book will go a long way to satisfy the long felt need of students for a friendly book on Chemistry. There are numerous features in this first edition that are designed to make learning Interdiciplenery tpics for chemical science more effective and more enjoyable, structural properties histry based. The objective of this book, *Interdisciplinary Topics* is to introduce various topics according to the syllabus outline in easy and effective way. According to the topics of syllabus the whole book is divided into five parts in total. The first part covers to "Chemistry in Nanoscience and Technology" and part second is "Catalyst and Green Chemistry" and part third is on "Medicinal Chemistry" and part four is on "Supramolecular Chemistry" and last part five is on "Environmental Chemistry" We appreciate that Interdiciplenary is often troublesome, and therefore have taken care to give help with this enormously important aspect of chemical science.

We gratefully acknowledge the assistance and constructive comments of our colleagues and Research students during the preparation of this book. Any suggestions for improvement of the book are welcome and will be gratefully acknowledged.

Key points of the book:- The first key point is to present the subject matter in a logical order, from the simple to the more complex. Each part builds on the contant of CSIR NET/JRF based syllabus.

- ✓ The second key pont the philosophy-that we strive to maintain throughout the text is that if a topic or concept is worth treating, the it is worth treating in sufficient deatail and to the extent students have the opportunity to fully understand it without having to consult other sources.
- ✓ The third key point is to include features in the book that will expedite the learning process. These learning aids include the following;
- ✓ Numerous illustration, now presented in full color, and photographs to helpvisualize what is being presented
- ✓ Learning objectives to focus student/ scholers attention on what they should be getting from each chapter
- ✓ Why study'and Interdiciplenary is so importat, items as well as case studies that provide relevance to topic discussions
- ✓ Concept Check, objective questions that test whether a student understand the subject maater on a conceptual level
- ✓ Starting of part summary of all used topics are given in the first pages, with pages numbering.
- ✓ Histry terms, and description of histry highlighted in the left side of the pages related to topics
- ✓ Need information to understand this page, highlighted in the margins in the down of the all pages
- ✓ End of part objective questions and problems designed to peogressively develop students, understanding of concepts and facility with skills
- ✓ Answers to selected problems, so students can check their Answers sheets
- ✓ Aglossary, a global list of symbols, and reference to facilitate understanding of the subject matther

Exercises and problems:- The core of testing understanding is the collection of end od Part Exercises and Objective problems. The Excercises are staighforward objective lavel test that give practice with manipulating data. The problems are more searching. They are divided into partition.

E-books: An electronic book, also known as an e-book or eBook, is a book publication made available in digital form, consisting of text, images, or both, readable on the flat-panel display of computers or other electronic devices. Although defined as "an electronic version of a printed book" e-books exist without a printed equivalent., but also on any computer device that features a controllable viewing screen, including desktop computers, laptops, tablets and smartphones.

The Interdiciplenary Topics of Chemical Science by K.M. AMISH of Multidimensional Publication also available in e-book as a pdf formate on the website at <u>www.multidpublication.in</u>

Online Resource centre:- The online Resource Centre to accompany Interdiciplenery topics provides learnig resource to augment the printed book. It is free of cost before become the members of the Multidimensional Society, and provides additional material for download, much of which can be incorporated into a virtual learning environment.

The online resource centre can be accessed by visiting at www.multidpublication.in

ABBREVIATION

Abbre	eviation of Chemistry in Nan	oscience and Technology
•	ECE:-	Engineering computer science
•	EEM:-	Scanning tunneling microscope
•	NSTC:-	National Science and Technology Council
•	NNI:-	National Nanotechnology Initiative
•	SPM:-	Scanning probe microscope
٠	DNA:-	Deoxy nucleic acid
•	CNT:-	Carbon Nano tube
•	RBC:-	Red blood cell
•	RSM:-	Nano Structured Materials
•	SGM:-	Sol-gel method
•	VPDM:-	Vapour phase deposition method
•	BMP:-	Ball milling Photolithography
•	EBL:-	Electron beam lithography
•	2-D	Two-dimensional
•	QHE:-	Quantum Hall effect
•	YGM;-	Yield gram quantities
•	RSR:-	Royal Society Research
•	SWCN:-	Single-walled carbon Nanotubes
•	IBM:-	International Business Machines
•	TEM:-	Transmitted electron microscope
•	MWCNT:-	Multi wall carbon Nanotubes
•	TP:-	Tera Pascal
•	XRD:-	X-Ray diffraction
•	AERE:-	Atomic Energy Research Establishment
•	BCN:-	Boron carbon nanotube
•	BNN:-	Boron nitride nanotube
•	MS:-	Mass spectrometry
•	A°:-	Angstroms
•	@:-	Encapsulated inside the cage
•	MRI:-	Magnetic resonance imaging
•	CQDs:-	Carbon quantum dots
•	QDS:-	Quantum dois
	LEDS	Talevision
	1 V DI -	Photoluminosconco
	IL	Quantum confinement violde
	RSE.	Back scattered electrons
	AEM:-	Atomic force microscopy
	SEM-	Scanning force microscopy
	STM-	Scanning tunneling microscope
•	UV-S'-	Ultraviolet-Visible spectrophotometer
•	BLL:-	Beer-Lambert law
•	SERS:-	Surface-enhanced Raman scattering
•	DLS:-	Dynamic Light Scattering

•	DSC:-	Differential scanning calorimetry
•	LS:-	Light scattering
•	SDM:-	Single domain magnetic
•	QDSC:-	Quantum dot solar cells
•	ROS:-	Reactive oxygen species
•	FLB:-	Fluorescence light bulbs
•	ETG:-	Electric transmission grid
•	MIT:-	Massachusetts Institute of Technology
•	NEHI:-	Nanotechnology Environmental & Health Implications
•	IR:-	Infra-Red
•	PEGHCC:-	Polyethylene glycol-hydrophilic carbon clusters
•	ORD:-	Office of Research and Development
•	NMR:-	Nuclear Magnetic Resonance
•	NEHI:-	Nanotechnology Environmental and Health Implications
•	CD:-	Cardiovascular disease

Abbreviation of Catalyst and Green Chemistry EPA:-**Environmental Protection Agency** • GFEA:-German Federal Environmental Agency • P:-Prevent wastes **Renewable** materials R:-O:-Omit derivatisation steps D:-Degradable chemical products Use of safe synthetic methods U:-• C:-Catalytic reagents Temperature, Pressure ambient T:-I:-**In-Process monitoring** V:-Very few auxiliary substrates E:-E-factor, maximise feed in product • L:-Low toxicity of chemical products Y:-Yes, it is safe • QD:-Qualitative development • Research and Development R&D:-• **Oxford University Press** PUP:-• • FE:-Forestry and Environmental GGS:-Green Growth Strategy DMC:-Dimethyl carbonate • DESs:-Deep Eutectic Solvents • HPLC:-High Pressure Liquid Chromatography • DAR:-**Diels-Alder reactions** • OMC:-Organometallic complexes • Polymers of amino acid monomers PAAM:-• EHA:-Ethylhexanoic acid •

- SCR:- Selective Catalytic Reduction
- NOX:- Nitrogen oxides
- EGR:- Exhaust gas recirculation
- PI:- Pharmaceutical industry
- HTR:- Hydroxide transfer reactions
- PTC:- Phase-transfer catalyst

- QAS:- Quaternary ammonium salts
- LEC:- Low energy cosumption
- OMT:- Organometallic transformations
- QPS:- Quaternary phosphonium salts
- PEG:- Polyethylene glycols
- HTPTC:- High-temperature phase-transfer catalysts
- CPTC:- Chiral phase-transfer catalysts
- THF:- Tetra Hydro Furan
- GHG:- Greenhouse gas
- LAB:- Lead acid battery
- GW:- Global warming
- GCA:- Green chemistry approach
- AE:- Atom efficiency
- MI:- Mass intensity
- RME:- Reaction mass efficiency
- MP:- Mass Productivity
- CE:- Carbon efficiency
- EMY:- Effective mass yield
- PMI:- Product mass intensity
- MAOS:- Microwave-Assisted Organic Synthesis
- MEC:- Microwave-Enhanced Chemistry
- US:- Ultrasonics Sonochemistry
- US:- Ultrasound frequency
- UE:-
- PCCR:- Palladium catalyzed coupling reactions
- IUPAC:- International Union of Pure and Applied Chemistry

Ultrasound enhances

- TSY:- Time-space
- PPR:- Primary photochemical reactions
- SDR:- Secondary or dark reactions
- MC:- Microelectronic components
- TIM:- Traditional industrial methods
- MT:- Microfluidic technologies
- HTA:- Higher atom economy

Abbreviation of Medicinal Chemistry

•

- SARs: Structure–activity relationships
- 3Ds: Three dimensional structure
 - PEI: Paul Ehrlich Institute
- IASP: International Association for the Study of Pain
 - DASCS: Drug Addiction Sweeps City Streets
- IAQMS:- International Academy of Quantum Molecular Science
- CRO:- Contract Research Organization
- DNLD: De navo Ligand design
- WFN: World Federation of Neurology
- NSAIDs:- Nonsteroidal anti-inflammatory drugs
- WHO: World Health Organization

- TB: Tuberculosis
- CVD:-Cardiovascular disease
- CAD:-Coronary artery diseases •

Autonomic nervous system

Paroxysmal atrial tachycardia

Blood pressure

Red blood cells

Blood-brain barrier

Human immunodeficiency

Medicines for Malaria Venture

Intermittent preventive therapy

M.avium intracellulare complex

Multidrug-resistant tuberculosis

Isonicotinic acid hydrazide

Ribo nucleic acid

Mean arterial pressure

Calcium Channel Blockers

Rapid – and slow – growing species

Extensively drug-resistant tuberculosis

Highly active antiretroviral therapy

Nucleotide reverse transcriptase inhibitors

Nonnucleoside reverse transcriptase inhibitors

Histamine

Premature ventricular contractions

Non-steroidal anti-inflammatory drugs

National Institutes of Health initiative

Gram-positive and Gram-negative bacteria

- SP:-Streptococcus pyogenesa •
- ANS:-
- PVCs:-•
- PAT:-•
- NAAIDs:-•
- BP:-•
- **RBCs:-**•
- NIHI:-•
- H1,H2,H3,H4, :-
- BBB:-
- GP&GN-B:-•
- HIV /AIDS:-•
- MMV:-
- IPT:-•
- RSGS:-•
- MAC:-
- MDT-TB:-•
- XRD-TB:-•
- INAH:-•
- RNA:-٠
- HAART:-•
- NRTI:-•
- NNRTI:-•
- MAP:-
- CCB:-

Abbreviation of Supramolecular Chemistry

- •:-Degrees • Susceptibility c :-Å :-•
- Angstroms DE:-Effective energy barrier •
- Cm³:-Cubic centimetres •
- AC :-Alternating current •
- Bipy:-Bipyridine •
- Cg:-Centroid •
- DC :-Direct current
- DMF:-Dimethylformamide •
- DMSO:-Dimethylsulfoxide •
- EA:-Elemental analysis •
- Electron impact • EI:-
- ESI:-Electrospray ionisation •
- Et2O:-Diethyl ether •
- Fourier transform infrared FT-IR:-Mercury
- Hg:-
- Highly orientated pyrolitic graphite HOPG:-Infrared
- IR:-

•	K :-	Kelvin
•	Kb:-	Boltzmann constant
•	M:-	Molar
•	M:-	(IR) medium
•	MALDI :-	Matrix-Assisted laser desorption ionisation
•	MeOH :-	Methanol
•	MeCN:-	Acetonitrile
•	Me :-	Methyl
•	mg :-	Milligram
•	MHz:-	Megahertz
•	Min:-	Minute(s)
•	Ml:-	Millilitres
•	MLCT:-	Metal to ligand charge transfer
•	Mm:-	Millimeters
•	Mmol:-	Millimole
•	Mol:-	Mole
•	MOF:-	Metal organic framework
•	MS	Mass spectrometry
•	m/z :-	Mass/charge ratio
•	nm :-	Nanometres
•	NMR:-	Nuclear magnetic resonance
•	Oe:-	Oersted
•	<i>P:-</i>	Para
٠	Ph:-	Phenyl
•	Ppm:-	Parts per million
•	Q:-	Quartet (NMR)
•	QTM:-	Quantum tunnelling of magnetisation
•	S :-	(IR) strong
٠	S :-	Spin ground state
٠	SCE :-	Saturated calomel electrode
•	SMMs:-	Single molecule magnets
•	SPM:-	Scanning probe microscopy
٠	STM :-	Scanning tunelling microscopy
٠	ToF-SIMs:-	Time-of-flight secondary ion mass spectrometry
٠	UHV:-	Ultra high vacuum
٠	UV-vis:-	Ultraviolet visible
٠	vdW:-	van der Waals
٠	VS:-	(IR) very strong
٠	VS:-	Versus
٠	W :-	(IR) weak
•	XAS:-	X-ray absorption spectroscopy
•	XMCD:-	X-ray magnetic circular dichroism
•	XRD:-	X-ray diffraction
•	XPS :-	X-ray photoelectron spectroscopy

A	h	brevia	ation	of En	vironmen	tal C	hemistry
-							

•	(aq):-	Aqueous species
•	Atm:-	Atmosphere (pressure)
•	ATP:-	Adenosine triphosphate
•	°C :-	Degrees Celsius (temperature)
•	CCD:-	Calcite compensation depth
•	CCN:-	Cloud condensation nuclei
•	CDT:-	Canyon Diablo troilite
•	CEC :-	Cation exchange capacity
•	CFC :-	Chlorofluorocarbon
•	CIA:-	Chemical index of alteration
•	D :-	Deuterium
•	DIC:-	Dissolved inorganic carbon
•	DIP :-	Dissolved inorganic phosphorus
•	DMS:-	Dimethyl sulphide
•	DMSP:-	Beta-dimethylsulphoniopropionate
•	DNA:-	Deoxyribonucleic acid
•	DSi:-	Dissolved silicon
•	E° :-	Standard electrode potential (V)
•	Eh:-	Redox potential (V)
•	EPA:-	Environmental Protection Agency
•	FACE :-	Free-air CO2 enrichment
•	FAO:-	Food and Agriculture Organization
•	Fs:-	Furans
•	G:-	Gibbs free energy (kJmol-1)
•	g :-	Gram (weight)
•	(g):-	Gas

• (g):-

EXERCISE

PART 1: INTRODUCTION TO NANOSCIENCE & NANOTECHNOLOGY

For PDF please v	isit our website subject o	catalogue www.multidipul	blication.in
Multiple Choice	Questions		
Choose Appropr	riate Alternative		
Q ⁿ .1, 10 nm =	m		
(a) 10 ⁻⁸	(b) 10 ⁻⁷	(c) 10 ⁻⁹	(d) 10^{-10}
Q ⁿ .2, The size of	nanoparticles is betwe	een nm.	
(a) 100 to 1000	(b) 0.1 to 10	(c) 1 to 100	(d) 0.01 to 1
Q ⁿ .3, The diame	ter of hydrogen atom i	S	
[A] 1	[B] 10	[C] 0.1	[D] 0.01
Q ⁿ .4, Carbon at	oms make type of	bond with other carbon	atoms.
[A] Covalent	[B] ionic	[C] metallic	[D] hydrogen
Q ⁿ .5, Fullerene	or bucky ball is made u	p of carbon atoms.	
[A] 100	[B] 20	[C] 75	[D] 60
Q ⁿ .6, The therm	al conductivity of a sta	ndard SWNT along its le	ength is watt/(m.K)
[A] 3500	[B] 385	[C] 35000	[D] 35
Q ⁿ .7, 1 m =	nm.		
[A] 10 ⁻⁹	[B] 10 ⁻⁸	[C] 10 ⁹	$[D] 10^8$
Q ⁿ .8, "There is]	plenty of room at the b	ottom.'' This was stated l	by
[A] Eric Drexler	[B]	Richard Feynmann	
[C] Harold Croto	[D]	Richard Smalley	
Q ⁿ .9, who coined	d the word 'nanotechno	blogy'?	
[A] Eric Drexler	[B]	Richard Feynmann	
[C] SumioTijima	[D]	Richard Smalley	

Q ⁿ 10, According to	the definition by CRN	, nanotechnology	y is	
[A] Mechanical engin	neering	[B] atomic eng	gineering	
[C] Newtonian mech	anics	[D] micro-ele	ctronics	
Q ⁿ .11, Nanoscience	can be studied with th	e help of		
[A] Quantum mechan	nics	[B] Newtoniar	ı mechan	ics
[C] macro-dynamics		[D] geophysic	S	
Q ⁿ .12, Greeks and F	Romans had used nand	oparticles in the 1	manufac	ture of
[A] Cosmetics for eye	es	[B] medicines		
[C] metal articles		[D] hair-dye		
Q ⁿ .13, Egyptians we	ere using to prepare	are make-up for	eyes.	
[A] Nanoaluminium		[B] nanocoppe	er	
[C] nanosteel		[D] nanolead		
Q ⁿ .14, The sword of	Tipu Sultan was mad	le of		
[A] Nanolead		[B] nanoalumi	nium	
[C] Damascus steel		[D] Pure iron		
Q ⁿ .15, contai	ns nanoparticles prep	ared by using bio	ologically	y processed metal ores.
[A] Homeopathic me	dicines	[B] Modern ar	ntibiotics	
[C] Ayurvedic 'Bhasr	nas'	[D] Modern co	osmetics	
Q ⁿ .16, Who was the possess altogether d	first scientist to descr ifferent and unique p	ibe that substanc coperties?	es havin	g nanodimensions
[A] Richard Feynman	nn	[B] Eric Drexl	er	
[C] Archimedes		[D] Michael F	araday	
Q ⁿ .17, Which of the	following does not ap	ply to nanotechn	ology?	
[A] It is a general-put[C] Newtonian mecha	rpose technology. anics can describe it.	[B] I [D] I	t can be c t involve	called Green technology. s rearrangement of atoms.
Q ⁿ . 18, The diamete	r of human hair is	nm.		
[A] 50,000	[B] 75,000	[C] 9	90,000	[D] 1,00,000

Qⁿ.19, The diameter of human hair is _____ m.

[A] 5 x 10 ⁻⁸	[B] 5 x 10 ⁻⁷	$[C] 5 x 10^{-6} \qquad [D] 5 x 1$	0 ⁵
Q ⁿ . 20, The cut-off limit	of human eye	is nm.	
[A] 2,000	[B] 5,000	[C] 10,000 [D] 50,00	00
Q ⁿ .21, The size of E.Col	i bacteria is	nm.	
[A] 2,000	[B] 5,000	[C] 50	[D] 90
Q ⁿ .22, The size of RBC	is nm.		
[A] 50	[B] 90	[C] 2,000	[D] 5,000
Q ⁿ .23, The thickness of	a transistor is _	nm.	
[A] 50	[B] 90	[C] 2,000	[D] 5,000
Q ⁿ .24, The size of a viru	s is nm.		
[A] 2	[B] 20	[C] 50	[D] 2000
Q ⁿ .25, The diameter of a	a bucky ball is _	nm.	
[A] 1,000	[B] 100	[C] 10	[D] 1
Q ⁿ .26, The width of a ty	pical DNA mol	ecule is nm.	
[A] 1	[B] 2	[C] 5	[D] 10
Q ⁿ .27, 1 micrometer (m	icron) =	_ m.	
[A] 10 ⁻⁹	[B] 10 ⁻⁸	[C] 10 ⁻⁷	[D] 10 ⁻⁶
Q ⁿ .28, 1 micrometer (m	icron) =	_ nm.	
[A] 1,000	[B] 100	[C] 10	[D] 0.01
Q ⁿ .29, The full form of S	STM is		
[A] Scanning Tunneling	Microscope	[B] Scientific Technical Microscope	
[C] Systematic Technical	Microscope	[D] Super Tensile Microscope	
Q ⁿ .30, What does 'F' sta	and for in AFM	!?	
[A] Fine	[B] Front	[C] Force	[D] Flux
Q ⁿ .31, Which ratio deci	des the efficien	cy of nanosubstances?	
[A] Weight/volume		[B] Surface area/volume	

	[D] Pressure/volume	[D] Pressure/volume		
Q ⁿ .32, The surface area to volume ratio sphere with radius 5 cm is R ₂ . Then R ₁	o of a sphere with radius 1 cm is = R2.	s R 1 and that of a		
[A] 3 [B] 1/3	[C] 5	[D] 1/5		
Q^{n} .33, The surface area to volume ratio with side 10 units is R_2 . Then $R_2 =$	o of a cube with side 1 unit is R ₁ _ R ₁ .	and that of a cube		
[A] 1/10 [B] 10	[C] 1/100	[D] 100		
Q ⁿ .34, The two important properties of	f nanosubstances are			
[A] Pressure and friction[C] Sticking and temperature	[B] sticking and f [D] temperature a	friction and friction		
Q ⁿ .35, With the help of, Robert I	F. Curl and others discovered fu	ıllerene.		
[A] Electron microscope[C] Condensation technique	[B] magnetic reso [D] mass spectro	onance graph		
Q ⁿ .36, In the structure of fullerene each carbon atoms.	h carbon atom forms covalent b	oonds with other		
[A] One [B] two	[C] three	[D] four		
Q ⁿ 37, Who had invented the famous 'G	Geodesic' dome structure?			
[A] Eric Drexler [B] Buckmir	nster Fuller [C] Richard Small	[C] Richard Smalley [D] Faraday		
Q ⁿ .38, The largest cluster of carbon ato carbon atoms.	oms in Bucky balls known till to	oday consists of		
[A] 60 [B] 75	[C] 180	[D] 540		
Q ⁿ .39, The smallest cluster of carbon a carbon atoms.	toms in Bucky balls known till t	today consists of		
[A] 75 [B] 60	[C] 20	[D] 15		
Q ⁿ .40, The tensile strength of an MWN	T is Pa.			
[A] $63 \ge 10^6$ [B] $63 \ge 10^7$ 10^9	[C] 63 x 10 ⁸	[D] 63 x		

Qⁿ.41, The compressive strength of a nanotube _____ its tensile strength.

[A] is less than greater than	[B] is greater than	[C] is equal to	[D] may be
Q ⁿ 42, The hardness of a st	andard SWNT is Pa.		
[A] 63 x 10 ⁶ 10 ⁻⁹	[B] 25 x 10 ⁶	[C] 25 x 10 ⁹	[D] 25 x
Q ⁿ .43, The bulk modulus	of a standard SWNT is	_ that of diamond.	
[A] Less than	[B] greater than [C] equa	l to [D] less th	an or equal to
Q ⁿ 44, How much current	can be passed through 1 cm	² cross-section of a	metal nanotube?
[A] 10 ⁻⁹ A	[B] 10 ⁹ A	[C] 1000 A	[D] 0.001 A
Q ⁿ .45, The electrical cond	uctivity of a nanotube is	times that of cop	per.
[A] 10	[B] 100	[C] 1000	[D] 1/100
Q ⁿ .46, An MWNT possess	es electrical superconductiv	vity up to temperatu	ıre of
[A] 12 K	[B] 12°C	[C] 100 K	[D] 100°
Q ^{n.} 47, At room temperatu	re, the thermal conductivity	y of a copper wire i	s watt/(m.K).
[A] 3500	[B] 350	[C] 385	[D] 38.5
Q ⁿ .48, In radial direction,	the thermal conductivity of	f a nanotube is	_ watt/(m.K).
[A] 3500	[B] 385	[C] 350	[D] 0
Q ⁿ .49, The thermal stabili	ty of a nanotube is seen up	to K in vacuu	m.
[A] 100	[B] 1000	[C] 2200	[D] 3100
Q ⁿ .50, The thermal condu	ctivity of an SWNT along le	ength is watt/(m.K).
[A] 35	[B] 350	[C] 385	[D] 3500
Q ⁿ .51, The size of a quant	um dot is nm.		
[A] 5	[B] 10	[C] 50	[D] 100
Q ⁿ .52, The wavelength of	visible light is nm.		
[A] 40-70 70000	[B] 400-700	[C] 4000-7000	[D] 40000-

 Q^{n} .53, The capacity of a normal human eye to see the smallest object is _____ μm .

[A] 10000	[B] 1000	[C] 100	[D] 10	
Q ⁿ .54, The width	of a carbon nanotube is	nm.		
[A] 1	[B] 1.3	[C] 2.5	[D] 10	
Q ⁿ .55, The therma	al stability of a nanotube is	s seen up to K in air.		
[A] 100	[B] 1000	[C] 2000	[D] 3100	
Q ⁿ .56, Nanopartic Sultan?	les of which substance we	re found on the surface of the	sword of Tipu	
[A] Gold	[B] Lead	[C] Carbon	[D] Silicon	
Q ⁿ .57, Nano partie explosion?	cles of which atom are use	d to control collateral damag	e due to	
[A] Copper	[B] Aluminium	[C] Carbon	[D] Lead	
Q ⁿ .58, Who prepa	red and explained nanotu	bes for the first time?		
[A] SumioTijima		[B] Richard Smalley		
[C] Eric Drexler		[D] Richard Feynmann		
Q ⁿ .59, Which of th	ne following statement/s is	are true?		
i.Volu	ume to surface area ratio i	s very large for nanomateria	ls.	
ii.The	cut-off limit of human ey	e is 10 ⁻⁵ m.		
iii.Har	dness of a SWNT is about	63 x 10 ⁹ Pa.		

iv.Carbon nanotubes are cylindrical fullerenes.

[A] All four	[B] (ii) and (iv)
[C] (i), (ii) and (iv)	[D] (ii), (iii) and (iv)

Q ⁿ .60,	Match	the obje	cts in Par	t A with	their si	ze in Part I	B.
---------------------	-------	----------	------------	----------	----------	--------------	----

PART A	PART B	
(1) Nanoshell	(a) 100 nm	
(2) Hydrogen atom	(b) 2000 nm	
(3) E. Coli bacteria	(c) 90 nm	
(4) Transistor	(d) 0.1 nm	

[A] 1-a, 2-c, 3-d, 4-b	[B] 1-b, 2-a, 3-c, 4-d
[C] 1-a, 2-d, 3-b, 4-c	[D] 1-c, 2-d, 3-b, 4-a

Qⁿ.61, Match the items in Part A with appropriate alternative in Part B.

PART A	PART B	
(1) Biotechnology	(a) Quantum dots	
(2) Material science	(b) Spintronics	Ĩ
(3) Information technology	(c) Gene therapy	
	(d) Swarm robotics	

[A] 1-c, 2-d, 3-a	[B] 1-c, 2-b, 3-a
[C] 1-c, 2-a, 3-b	[D] 1-a, 2-b, 3-d

Qⁿ.62, The suffix '-ene' in the name of fullerene shows the presence of _____ in the molecule.

[A] One triple bond	[B] one double bond
[C] Two single bonds	[D] two triple bonds

Qⁿ63. Which concept marks a fundamental difference between the dynamics of the electromagnetic field (Maxwell equations) and the Schrödinger equation?

(a)Wave nature	(b) Momentum
(c) Potential	(d) Mass

Qⁿ64 .The intrinsic indetermination on the position of an electron is given by

- (a) The electron's wavelength
- (**b**) The extent of the wave packet
- The diameter of the electron (d) 7
 -) The size of a pixel of the measuring

apparatus

(c)

Qⁿ65. At high temperatures, bosons and fermions behave similarly. At low temperatures however,

- (a) Bosons are likely to occupy higher energy states than fermions
- (b) Two bosons cannot be in the same quantum state
- (c) Two bosons cannot have the same energy
- (d) Bosons are likely to occupy the ground state

Qⁿ66. Which of the below is not a necessary requirement for scanning tunneling microscopy?

- (a) Tip and sample interact via a van der Walls force
- (b) Tip and sample are conductive
- (c) Tip and sample distance is stable within better than 1 Angström
- (d) Tip and sample are maintained at a different electrostatic potential

Qⁿ67.A mechanical oscillator driven with a small amplitude will sense an external force gradient as an effective Change in its

(a) Spring constant	(b) Mass
(c) Damping	(d) Oscillating drive force

Qⁿ68. When scanning tunneling microscopy (STM) reveals periodic structures with atomic dimensions, what is exactly seen?

- (a) The atomic lattice
- (b) Electronic density of states modulations associated to the atomic lattice
- (c) Fermi level modulations associated to the atomic lattice
- (d) The electron diffraction pattern associated to the atomic lattice

$\mathbf{Q}^{n}\mathbf{69}$. The Schrödinger equation has a counterpart in classical mechanics, namely the equation of

(a)	Mass conservation	(b)	Momentum conservation
(c)	Energy conservation	(d)	Number of particles conservation

Qⁿ70.What precaution is absolutely necessary for imaging a semiconducting carbon nanotube with STM?

- Apply a sufficiently high tip sample voltage (a)
- Drive tip with sufficiently high oscillation amplitude **(b)**
- Use sufficiently low temperatures (c)
- **(d)** Use sufficiently high vacuum

Oⁿ71.A nanometer sized conductive island is connected between two contacts via tunnel barriers, in the Presence of a third gate electrode. Such a device is often called a single electron transistor. This is because at low **Bias voltage**,

- **(a)** It can deliver only a single electron of current / second.
- **(b)** It can deliver an electron flow defined with a precision better than 1 electron
- (c) The charge on the island is defined with a precision better than 1 e.
- The charge on the island is exactly 1 e. (**d**)

Qⁿ72. Interest of increasing wafer diameter from 200 mm to 300 mm

- The price of a 300 mm wafer is lower **(a)**
- It is easier to fabricate **(b)**
- To produce more silicon devices from a single wafer (c)
- To increase the size of a die **(d)**

$Q^{n}73$. What is a n type Si semiconductor (SC)

- **(a)** A Si semiconductor without impurities
- A Si Semiconductor with impurities from column III and V of Mendeleev table **(b)**
- A Si Semiconductor with impurities from column III of Mendeleev table (c)
- A Si Semiconductor with impurities from column V of Mendeleev table **(d)**

Qⁿ74.A Semiconductor diode is made of

(c)

- The junction of two n type SC (a) **(b)**
 - The junction of two p type SC The junction of two non-doped SC The junction of n and p type SC (**d**)

Qⁿ75.What is the thickness of the dielectric in a 28 nm MOS transistor

(a)	Lower than 1 µm	(b)	Lower than 10 nm

(c) Lower than 1 nm (**d**) Lower than 0.1 nm

Qⁿ76. Since 2007 Intel has replaced the SiO2 MOS dielectric by

- **(a)** A SiOCH dielectric **(b)** A Hafnium-based dielectric
- A crystalline SrTiO3 dielectric (c) A porous material **(d)**

Qⁿ77. Plasma etching is

- **(a)** Anisotropic with good selectivity Isotropic with good selectivity **(b)**
- Isotropic with poor selectivity Anisotropic with poor selectivity (c) (**d**)

Qⁿ78. A Plasma assisted CVD process

- Is made at lower temperature than a CVD process **(a)**
- **(b)** Is made at higher temperature than a CVD process
- Is based on the sputtering of a target (c)
- **(d)** Is based on the decomposition of gaseous precursors thanks to wafer heating

Qⁿ79. Moore's Law predicts that

- The number of transistors in an integrated circuit is doubling every 2 months **(a)**
- The number of transistors in an integrated circuit is doubling every 2 years **(b)**
- The number of transistors in an integrated circuit is doubling every 4 years (c)
- The number of transistors in an integrated circuit must be kept constant **(d)**

Qⁿ80. The process that gives the better conformality is DVD (**b**) CVD (a)(a)DECVD

(a)	PVD	(b)	CVD	(c)	PECVD	(d)	ALD
Q ⁿ 81.	To reduce the interco	onnect o	delay the best	solution	is		
(a)	Cu as metal and SiO2	2 as die	lectric	(b)	Al as metal and SiO	2 as diel	ectric
(c)	Cu as metal and SiO	CH as d	lielectric	(d)	Al as metal and SiO	CH as d	ielectric
Q ⁿ 82.	Since 2014 the Fin FI	ET INT	EL Transisto	r is			
(a)	3D			(b)	Using graphene		
(c)	Using nanowires			(d)	Using IIIJV materia	ls instea	d of Si

(J)

Qⁿ83.The carrier transport in grapheme goes through π –bands that are resulted from.

Sp2 hybridization of valence electrons **(b)** sp3hybridization of valence electrons

Unhybridizeds-orbital valence electrons **(d)** Unhybridizedp-orbital valence (c) electrons

Qⁿ84. The kinetic energy of electrons in monolayer grapheme is proportional to

(a) The value of wave vector, k

(a)

- (b) The square value of wave vector, k^2
- (c) The value of electron effective mass, m*
- (d) The reciprocal value of electron effective mass, 1/m*

Qⁿ85. What does the "chirality" (n, m) denote for carbon nanotubes (CNT)?

- (a) If the CNT is single-walled or multi-walled
- (b) If the CNT is insulating or metallic
- (c) A direction that the grapheme sheet is rolled up to form a tube
- (d) A direction that the CNT extends along

Qⁿ86. If a single- walled CNT is semiconducting, the band gap scales with

- (a) The value of diameter, d
- (b) The square value of diameter, d^2
- (c) The reciprocal value of diameter, 1/d
- (d) The reciprocal square value of diameter, $1/d^2$

Qⁿ87. Fullerene molecule is..

- (a) A cluster of 60 carbon atomsall bonded with *sp3* hybrids
- (b) A shell of 60 carbon atomsall bonded with sp^2 hybrids
- (c) A complex of 60 carbon atoms bonded with mixture of sp2 and sp3 hybrids
- (d) A ball shape of 60carbon atoms bonded with 2p valence electrons

Qⁿ88. Exfoliation" is a method to make grapheme by..

- (a) Lifting off grapheme layers from a large graphite crystal
- (b) Extracting the top most Si atoms from a perfect SiC surface leaving grapheme on the top
- (c) Synthesizing carbon atoms on polymer foils
- (d) Depositing carbon on metal foil

Qⁿ89. Graphene epitaxial growth by thermal annealing of SiC is completed by..

- (a) Segregation to condense a carbon layer on top of the surface
- (b) Silicon sublimation during annealing, while carbon atoms remain on the surface
- (c) An oxidation process to remove silicon atoms
- (d) A reduction process to rearrange carbon atoms on the surface

Qⁿ90. As a possible solution for future CMOS technology, why grapheme FETs are more favored than CNT-FETs?

- (a) Because grapheme FETs are more suitable for large area processed using existing technology
- (b) Because grapheme FETs can bring to ballistic transport
- (c) Because grapheme FETs have a larger current handing capability

(d) Because grapheme FETs have a higher on/off current ratio

Qⁿ91. The grapheme –based sensors are normally highly sensitive for individual gas molecule detection,

- (a) Because of linear energy dispersion and low density of states near the Dirac poin
- (b) Because that the molecules are absorbed on a uniform single atomic sheet
- (c) Because of interaction with π electrons
- (d) Because of high conductance in graphene

Qⁿ92. CNTs process a very high Young's modulus, due to...

- (a) 4 valence electronic bonds of carbon atoms that equally share stress in any directions
- (b) A perfect construction in tubular form
- (c) Covalent *sp2* bonds formed between the individual carbon atoms
- (d) Delocalized π -electrons that travel across several carbon atoms to increase strength

Qⁿ93. What is the usual size range of a Eucaryotic cell?

(a)	1-2 nm	(b)	1-2"µm	(c)	10-20 μm	(d)	100-200 μm

Qⁿ94. What is a biosensor made of?

(a)	A probe and a surface	(b)	A sensing layer and a transducer
(c)	A target and a probe molecule	(d)	A biomarker and a probe

Qⁿ95. Which material is (are) suitable for electrical signal transducing?

- (a) PDMS (b) Silicon
- (c) Glass (d) polyethylene

Qⁿ96. Which cell-type is well adapted to signal detection with micro-machined transistors?

- (a) Muscle cells (b) Hepatocytes
- (c) Circulating Tumor Cells (d) Neurons

Qⁿ97.Please cite 1 anti-cancerous agent

- (a) Paxlitaxel (b) Insulin
- (c) Poly (ethylene glycol) (d) Polyglutamic acid

Qⁿ98. What is the "Enhanced Permeability and retention (EPR) effect?

- (a) The retention of the nanoparticules inside the vessel wall
- (b) An enhanced permeability of the vessel wall at the tumor site due to an abnormal organization of the endothelium
- (c) The enhancement of life time of the nanoparticles in the blood flow
- (d) A leaky plasma membrane

Qⁿ99. Cell adhesion to the extracellular matrix is:

- (a) Mediated by specific trimerictransmembrane receptors
- (b) Mostly mediated by heterodimeric receptors called integrins
- (c) Mostly mediated by heterodimeric receptors that are called cadherins
- (d) Mostly due to hydrophobic interactions with the substrate

Qⁿ100. What is the name of the adhesive structures formed by a cell in response to a substrate presenting a Nano or Micro Topography?

- (a) Integrins (b) Focal adhesions
- (c) Actin

(d) Lipids

ANSWER

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	c	c	a	d	a	С	b	a	b	a	d	d	c	С	d	c	a	d	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
a	d	b	c	d	b	d	a	a	С	b	С	a	b	d	c	b	d	С	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	С	b	b	С	a	С	d	d	d	a	b	d	b	b	С	b	a	d	c
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	b	d	b	d	a	a	b	С	a	С	С	d	d	С	b	a	a	b	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100

Q ⁿ .No.1, The	tensile strength of a o	carbon nanotube is	times that of steel?
a)10	b) 25	c)100	d)1000

Qⁿ.No.2, Which of the following is an example of top-down approach for the preparation of Nanomaterials?

a) Gas phase agglomeration	b) Molecular self-assembly
c) Mechanical grinding	d) Molecular beam epitaxy

Qⁿ.No.3,Which of the following is an example of bottom-up approach for the preparation of nanomaterials?

a) Etching	b) Dip pen Nano-lithography
c) Lithography	d) Erosion

Qⁿ.No.4, Quantum confinement results in?

- a) Energy gap in semiconductor is proportional to the inverse of the square root of size
- b) Energy gap in semiconductor is proportional to the inverse of the size
- c) Energy gap in semiconductor is proportional to the square of size
- d) Energy gap in semiconductor is proportional to the inverse of the square of size

Qⁿ.No.5, Which of the following is the principal factor which causes the properties of Nanomaterials to differ significantly from other materials?

a) Size distribution

c) Quantum size effects

b) Specific surface featured) All the mentioned

Qⁿ.No.6, Select the incorrect statement from the following options?

a) Self-assembly is a top-down manufacturing technique

b) In self-assembly, weak interactions play very important role

c) Self-assembling molecules adopt aorganised structure which is thermodynamically more stable than the single, unassembled components

d) Compared to the isolated components, the self-assembled structure has a higher order

Qⁿ.No.7,Which of the following is the application of nanotechnology to food science and technology?

a) Agriculture	b) Food safety and biosecurity
c) Product development	d) All of the mentioned

Qⁿ.No.8, What are the advantages of Nano-composite packages?

a) Lighter and biodegradable b) Enhanced thermal stability, conductivity and mechanical strength

c) Gas barrier properties d) All of the mentioned

Qⁿ.No.9, The prefix "Nano" comes from a...?

a) French word meaning billion	b) Greek word meaning dwarf
c) Spanish word meaning particle	d) Latin word meaning invisible

Qⁿ.No.10, Who first used the term nanotechnology and when?

a) Richard Feynman, (1959)	b) Norio Taniguchi, (1974)
c) Eric Drexler, (1986)	d) SumioIijima, (1991)

Qⁿ.No.11, What is a buckyball?

a) A carbon molecule (C₆₀)

b) Nickname for Mercedes-Benz's futuristic concept car (C₁₁₁)

c) Plastic explosives nanoparticle (C₄)

d) Concrete nanoparticle with a compressive strength of 20 nanonewtons (C_{20})

Qⁿ.No12, Which of these historical works of art contain nanotechnology?

a) Lycurgus cup	b) Medieval stained glass windows in churches
c) Damascus steel swords	d) All of the above

Qⁿ.No.13, Richard Feynman is often credited with predicting the potential of nanotechnology. What was the title of his famous speech given on December 29, 1959?

a) There is a tiny room at the bottom	b) Things get Nanoscopic at the bottom
c) Bottom? What bottom?	d)There is plenty of room at the bottom

Qⁿ.No.14, How many oxygen atoms lined up in a row would fit in a one nanometer space?

a) None; an oxygen atom is bigger than 1 nm	b) One
c) Seven	d) Seventy

Qⁿ.No.15,Which of these consumer products is already being made using nanotechnology methods?

a) Fishing lure	b) Golf ball
c) Sunscreen lotion	d) All of the above

Qⁿ.No.16, If you were to shrink yourself down until you were only a nanometer tall, how thick would a sheet of paper appear to you?

a) 170 meters	b) 1.7 kilometers (a bit more than a mile)
c) 17 kilometers	d)170 kilometers

Qⁿ.No. 17, What is Graphene?

a) A new material made from carbon nanotubes

b) A one-atom thick sheet of carbon

c) Thin film made from fullerenes

d) A software tool to measure and graphically represent nanoparticles

Qⁿ.No. 18, Which of these well-known phrases from Star Trek depends on the (fictional) use of nanotechnology?

a) Beam me up, Scotty!	b) Tea. Earl Grey. Hot
------------------------	------------------------

c) You will be assimilated. Resistance is futile. d) All of the above

Qⁿ.No. 19, What is grey goo?

a) A hypothetical substance composed of out-of-control self-replicating nanobots that consumes all living matter on Earth

b) The feeder material used to grow grey nanoparticles in the laboratory

c) Toxic byproduct resulting from the synthesis of carbon nanotubes

d) Waste product from the production of nanoglue made from the membranes on the feet of the Madagascan Grey Gecko

Qⁿ.No.20, Nanorobots (nanobots)...?

a) Do not exist yet

b) Exist in experimental form in laboratories

c) Are already used in nanomedicine to remove plaque from the walls of arteries

d) Will be used by NASA in the next unmanned mission to Mars

Qⁿ.No. 21, What is the 2017 budget for the U.S. National Nanotechnology Initiative?

a) \$587 million	b) \$917 million
c) \$1.4 billion	d) \$2.1 billion

Qⁿ.No.22, Plasmonics is...?

a) A field of nanophotonics that holds the promise of molecular-size optical device technology

b) The science of fluorescent nanoparticles used in modern fireworks

c) A hypothetical science used in science fiction weaponry (plasma cannons)

d) The technology used to design and build the laser-guided photonic gyroscopes used in aviation.

Qⁿ.No. 23, What exactly is a quantum dot is/are?

a) A semiconductor nanostructure that confines the motion of conduction band electrons, valence band holes, or excitons in all three spatial directions.

b) The sharpest possible tip of an Atomic Force Microscope

c) A fictional term used in science fiction for the endpoints of wormholes

d) Unexplained spots that appear in electron microscopy images of nanostructures smaller than 1 nanometer

Qⁿ.No.24, The most important property of nonmaterial is?

a) Force	b) Friction
c) Pressure	d) Temperature

Qⁿ.No.25, Who is generally credited with the first serious scientific claim that manufacturing on the molecular or even the atomic scale was possible? The claim was made at California Technical Institute and was called, ''There's Plenty of Room at the Bottom''?

a) Richard P. Feynman	b) Ed Regis
c) K. Eric Drexler	d) Ralph Merkle

Qⁿ.No.26, In 1986, Dr. K. Eric Drexler published a book for the layman that gave a wide overview of the potential applications of molecular nanotechnology in such areas as computing, medicine, space science, and the military. What was the name of this groundbreaking book?

a) Smaller is Better	b) Engines of Creation
c) A Crowded Blueprint	d) The Atomic Cookbook

Qⁿ.No.27, A particular molecule of carbon made up of sixty carbon atoms has received some press as a structure that shows promise as a basic building block in the area of molecular manufacturing. What is the whimsical nontechnical name for these molecules?

a) Fullerrodsb) Nanonodesc) Buckyballsd) Nanocubes

Qⁿ.No.28,What is the general name for the class of structures made of rolled up carbon lattices?

a) Nanorods	b) Nanotubes
c) Nanosheets	d) Fullerrods

Qⁿ.No.29,What is the term used in the field of nanotechnology to describe an as-yet theoretical device that "will be able to bond atoms together in virtually any stable pattern?"

a) Stacker	b) Replicator
c) Assembler	d) Constructor

Q ⁿ .No.30, As annual inves	s of public record at the stment in molecular nar	end of 2002, which country was making the greatest otechnology research?	
a) Russia		b) United States	
c) Japan		d) South Korea	
Q ⁿ .No.31, W	hich technology is used	to make antibiotic drugs?	
a) Biotechno	logy	b) Nano biotechnology	
c) Nanotechr	nology	d) Convergence technology	
Q ⁿ .No.32, In	which of these is the m	ain branch of Nano Technology?	
a) Nano Elec	etronics	b) Nano Materials	
c) Nano biote	echnology	d) All main branches	
Q ⁿ . No. 33, I	f three atoms are kept t	ogether with each other, then what will be the length of	
those three a	atoms?		
a) 1 nm	b) 10 nm	c) 100 nm d) 1000 nm	
Q ⁿ .No. 34, T	he shape and size of na	noparticles do not dependon the following properties?	
a) On pH		b) Concentrations	
c) On the mo	bility	d) None of these	
Q ⁿ .No. 35, Is	s the fifth century cup f	ound in some Roman cup called Lycurgus?	
a) These cup	s appear green in the ligh	t enforced	
b) These cup	s appear red in the Movin	ng light	
c) Appearance	ce is green in Moving ligh	ntand looks red in enforced light.	
d) Green in n	notion and red in rotating		
O ⁿ . No.36. T	`he sharpness and stren	gth of the Japanese Samurai sword. it can easily do two	
L	ress and show		

Qⁿ. No.36, The sharpness and strength of the Japanese Samurai sword, it can easily do t pieces of iron, because of it?

a) Thickness of sword occurs in micro range

b) The thickness of the sword occurs in the nano range

c) Thickness of sword is in the range femito

d) The thickness of sword occurs in pico range

Qⁿ.No. 37, Which spectroscopy is used to detect the nanoparticles present in the gas?

- a) Electron spectroscopy b) Mass spectroscopy
- c) Mossbauer spectroscopy d) Proton spectroscopy

Qⁿ.No.38, Which technology is used to detect the nanoparticles present in the liquid?

a) Browonian speed

b) Raman scatteringd) All can be used

c) Light scattering

Oⁿ.No.39, Quantum Dots is/are used?

a) Tumor cell treatment c) Liver cell treatments

b) Cancer cell treatments d) All can be treated

Qⁿ.No. 40, how many transistors can be applied on a single chip?

a) 100 lakh	b) 100 million
c) 100 billion	d) 100 trillion

Qⁿ.No.41, What can we transfer with the help of nanotechnology?

- a) Gene transfer
- b) Tissue transfer c) Cell Transfer d) All of the above

Qⁿ.No.42, The color of the wings of the butterfly and the structure of the wings is displayed when?

- a) Increases the resolution power of the SEM
- b) The scattering of light is inserted on the wings of the butterfly
- c) Dispersion of light is scattered on the Nano structure of the butterfly wings
- d) Increases the resolution power of the TEM

Qⁿ.No.43, Water drop does not make the surface of the lotus leaf round and the drop of water seems to be moving on the leaves, is it that?

- a) Lotus leaves that is smooth
- b) The drop of water gets converted into nanoparticles
- c) Due to the Nano structure on the smooth surface of lotus leaves
- d) It depends on our eye's resolution power

Qⁿ.No.44, Spider mesh from steel and nylon?

a) It is more likely to be stretch b) There is more tension c) Is less likely to be dashing d) Now the research is going on

Q^{n.} No. 45, In which Indian Scientist made inventions of Nano technology at the NalandaTakshashilaUniversity, 600 BC?

a) Jagdish Chandra Bose	b) Kanad
c) Subramanyam Chandrasekhar	d) Dr. BirbalSahni

Qⁿ.No. 46, What is the main reason for the use of nanoparticles in Drug Delivery?

a) Due to their dispersal ability

b) due to their solubility

c) Due to their adhesiveness

d) All of the above

.

Q ⁿ .No.47, Which of these Nanopartic through the fetal woman's placenta?	eles produce harmful effects by reaching the womb
a) Silver nanoparticles	b) Gold nanoparticles
c) Copper nanoparticles	d) All Nanoparticles
Q ⁿ .No.98, Mass on dosage (DPM) It i quarts, which are accountable?	s assumed that nanotubes produce more toxicity than
a) I waa tawiaita	h) I avan taviaity

a) Lung toxicity	b) Lever toxicity
c) Kidney toxicity	d) All of the above

Q ⁿ .No. 49, Is the example of 0D	Zero Dimionial Nano materials from the following?
a) Nanoparticles	b) Nanodotes
c) Nanocluster	d) All of the above

Qⁿ. No.50, In discussions of the potential of molecular nanotechnology, the possibility has been posited that badly or maliciously designed self-assembling structures could get out of control, and destroy or disassemble all structures they encounter in their blind quest to replicate. What is the term for such a structure or group of structures?

a) Blue Goo

c) Red Goo

b) Green Good) Gray Goo

ANSWER																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	c	b	d	d	a	d	d	b	b	a	d	d	c	d	d	b	d	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
c	a	a	b	a	b	с	b	c	c	b	d	a	c	d	b	b	d	b	C
41	42	43	44	45	46	47	48	49	50										
d	c	c	a	b	c	b	a	d	d										

ANSWER

PART 2: CATALYSIS AND GREEN CHEMISTRY

EXERCISE

For PDF please visit our website subject catalogue <u>www.multidipublication.in</u> <u>Choose Appropriate Alternative</u>

Multiple Choice Questions

Q ⁿ 1 .	The concept of green chemistry was co	oined by	?		
(a)	Paul Anastas	(b)	Komiya		
(c)	Menzer	(d)	Paque	etta	
Q ⁿ 2.	The first known ionic liquid discovered	ed by Wa	alden wa	as?	
(a)	1-Octyl-3methyl imidazolium bromid	e	(b)	Ethyl ammonium nitrate	
(c)	1-Methyl imidazolium tetra fluorobor	ate	(d)	Acidic ionic liquids	
Q ⁿ 3 .	The Emerging Green Technology are?	•			
(a)	Microwave and photochemistry		(b)	Sonochemistry and electrochemistry	
(c)	Both (a) and (b)		(d)	Nuclear chemistry	
Q ⁿ 4 .	Glucose can be used as the starting ma	aterial in	n place o	f benzene in the synthesis of ?	
(a)	Adipic acid	(b)	Catec	hol	
(c)	Hydroquinone	(d)	All of	f these	
Q ⁿ 5 .	The reaction(s) carried out in aqueous	s media i	is (are)?		
(a)	Barbier Grignard reaction	(b)	Peric	yclic reaction	
(c)	Transition metal catalyzed reaction	(d)	All of	f these	
Q ⁿ 6.	The catalyst which functions as a tran	sport sh	uttle is?		
(a)	Polymer supported catalyst	(b)	Phase	e transfer catalyst	
(c)	Photocatalyst	(d)	Oxida	ation catalyst	
Q ⁿ 7 .	Enzyme catalysis is applicable in?				
(a)	Aqueous media	(b)	Nne-a	aqueous solvents	
(c)	Supercritical fluids	(d)	All of these		
Q ⁿ 8 .	The first commercial process based	on ioni	ic liquid	ls, for the production of alkoxy phenyl	
phos	phine, was developed by?		-		
(a)	LudwingMaase	(b)	Dang	i	
(c)	Muneer	(d)	Vamathevan		

Qⁿ9.The dimerization reaction of (C₆₀) Fullerene in presence of KCN to give [2+3] adduct is a?

- (a) Solid supported organic synthesis
- (b) Solid phase organic synthesis without solvent
- (c) Adsorbent based synthesis
- (d) None of above

Qⁿ10. Commonly used catalyst for solid-liquid systems are?

- (a) Crown ether (b) Polyglycol
- (c) Both (a) and (b) (d) Iodine

Qⁿ11. Green chemistry aims to?

- (a) Design chemical products and process that maximize profits
- (b) Design safer chemical products and processes that reduce or eliminate the use and generation of hazardous substances
- (c) Design chemical products and processes that work most efficiently
- (d) Utilize non-renewable energy

Qⁿ12. Dr. Paul Anastas& Dr. John Warner created 10 Principles of Green Chemistry to reduce or eliminate the use and generation of hazardous substances?

(a)	True	(b)	False

Qⁿ13. Which of the following are among the 12 Principles of Green Chemistry?

- (a) Design commercially viable products (b) Use only new solvents
- (c) Use catalysts, not stoichiometric reagents (d) Re-use waste

Qⁿ14. Green chemists reduce risk by?

- (a) Reducing the hazard inherent in a chemical product or process
- (b) Minimizing the use of all chemicals
- (c) Inventing technologies that will clean up toxic sites
- (d) Developing recycled products

Qⁿ15. Which of the following is a challenge for green chemists?

- (a) Awareness of the benefits of green chemistry
- (b) Developing chemicals that are recyclable
- (c) Training for cleaning up chemical spills
- (d) Knowing when to reduce and eliminate hazardous waste

Qⁿ16. Business benefits of green chemistry include?

- (a) Reduced costs associated with waste treatment and disposal
- (b) Innovating 'greener' products to entice customers
- (c) Greater compliance with environmental legislation
- (d) All of the above

Qⁿ17. Green chemistry is more expensive than traditional chemistry?

(a)	True		(b)	False	
Q ⁿ 18.	. What is the U.S. Presidential G	Green Chemistr	y Challe	enge Awa	rd?
(a)	An award related to recycling				
(b)	An award for industry only				
(c)	The only chemistry award give	en by the Presid	ent		
(d)	Challenges companies to beco	me fuel efficien	t		
Q ⁿ 19. save (. Since 1996, Presidential Green	Chemistry Ch ounds of hazar	allenge A dous ch	Award wi emicals a	nning technologies have helped nd solvents?
(a)	True			(b)	False
O ⁿ 20.	. The first listed of the 12 Princi	ples of Green (Chemistr	rv is?	
(a)	Prevent waste	(b)	Catal	ysis	
(c)	Atom economy	(d)	Benig	n solvents	
O ⁿ 21.	. This word is synonymous with	green chemistr	v and al	so means	harmless, or gentle and not life
threa	tening?	8	5		
(a)	Sustainable	(b)	Benig	gn	
(c)	User friendly	(d)	Green	nness	
O ⁿ 22.	. Which of the following is the g	reenest solvent	?		
(a)	Formaldehyde	(b)	Benze	ene	
(c)	Ethanol	(d)	Wate	r	
Q ⁿ 23. syster	. The figure above shows a pro m?	cess that is ofte	en used	as part of	f which 'green' product design
(a)	Market Flow Analysis		(b)	Custom	ner Market Flow Analysis
(c)	Life Cycle Assessment		(d)	Produc	t Life Analysis
O ⁿ 24.	. The definition of green chemis	trv is the same	as the d	efinition (of sustainability?
(a)	True	,		(b)	False
Q ⁿ 25.	. The term which refers to the b	reakup within	a compo	ound due	to microbial activity is?
(a)	Microbial degradation	(b)	Agro	-degradati	on
(c)	Photo-degradation	(d)	Deco	mposition	
O ⁿ 26.	. Which one of the following thr	ee terms is use	d in the	'sustainal	bility triangle'?
		(b)	Plane	t	
(a)	Micro-economics	(U)			
(a) (c)	Micro-economics Social responsibility	(b) (d)	None	of these	
(a) (c) O ⁿ 27.	Micro-economics Social responsibility The term used to measure a pr	(d) (d)	None n's envir	of these	l impact is?
(a) (c) Q ⁿ 27. (a)	Micro-economics Social responsibility . The term used to measure a pr Handprint	(b) (d) roduct or perso (b)	None n's envir CO2	of these ronmenta print	l impact is?

Q ⁿ 28.	Used to indicate the	level of co	ntaminants pres	ent, th	e term 'PPM	' means?	
(a)	Parts-per-micron		(b)	Parts	-per-million		
(c)	Parts-per-mass		(d)	Parts	-per-molecule	2	
Q ⁿ 29.	Environmental ben	efits of gre	en chemistry inc	lude?			
(a)	Fewer raw materia	ls and natu	ral resources used				
(b)	Cleaner production	technolog	ies & reduced em	issions			
(c)	Smaller quantities	of hazardo	us waste to be trea	ated and	d disposed of		
(d)	All of the above				*		
Q ⁿ 30.	The term missing in	Risk = Ha	azard x	is?			
(a)	Exposure	(b)	Cancer	(c)	Benign	(d)	Reactivity
Q ⁿ 31.	The following term	refers to tl	ne relative propo	rtion o	of chemical co	omponents	?
(a)	Togetherness	(b)	Stoichiometry	(c)	Metric	(d)	Colligative
Q ⁿ 32.	The word missing o	n the left s	ide of the figure	above	is?		
(a)	Enhancing	(b)	Facilitating	(c)	Reducing	(d)	Awareness
Q ⁿ 33.	is	fulfilling (the needs of the	preser	nt generation	without c	ompromising the
ability	of future generation	ns to meet	their needs?	-	_		
(a)	Sustainability		(b)	Gree	n chemistry		
(c)	Life Cycle Assessr	nent	(d)	Recy	cling		
Q ⁿ 34.	and mor	al argum	ents are often u	sed w	hen discussir	ng sustaina	bility and green
chemi	stry?						
(a)	Environment		(b)	Tech	nology		
(c)	Politics		(d)	Ethic	s		
Q ⁿ 35.	, or VOCs, h	ave been r	eplaced and wer	e bann	ed in some p	aints?	
(a)	Versatile Organic	Chemicals			(b) Vo	olatile Orga	nic Compounds
(c)	Volatile Organic C	omponents			(d) Ve	ersatile Odo	orless Components
Q ⁿ 36.	Shortly after mid-ni	ght in 1984	l, a reaction caus	ed pois	sonous methy	'l isocyanat	e gas to leak from
a facto	ory in this city,	causii	ng 3,700 deaths?				
(a)	Bhopal	(b)	Hinkley	(c)	Calcutta	(d)	Siberia
Q ⁿ 37.	In the late 1960's, ?	the Cuya	hoga River in C)hio oʻ	verloaded wi	th chemica	al pollutants and
(a)	Killed fish			(b)	Polluted su	urrounding	soil
(c)	Caused foaming			(d)	Caught fir	e	

Q ⁿ 38. I	Benzene, a substance, is an :	importa	nt indus	strial solvent used in the production of
pharma	aceuticals, plastics, and dyes?			
(a)	Odorless		(b)	Non-flammable
(c)	Biodegradable		(d)	Carcinogenic
Q ⁿ 39. 1	The following legislation gave birth to	today's	green ch	nemistry initiatives?
(a)	Clean Water Act of 1972		(b)	Montreal Protocol of 1989
(c) Poll	ution Prevention Act of 1990		(d)	Superfund Act of 1980
Q ⁿ 40. I evaluat	In 1998, this state signed green chem	istry leg	islation	promising to remove politics from the
cvaluat	ton of disputed chemicals.			
(a)	Oregon	(b)	Califo	rnia
(c)	New York	(d)	Florida	a
Q ⁿ 41. 7	The following is often referred to as th	e univer	sal solve	ent and is a preferred green solvent?
(a)	Water	(b)	Metha	nol
(c)	Ethyl Acetate	(d)	Benzen	ne
Q ⁿ 42. <i>A</i>	A chemical process with an E-Factor of	of 1 creat	tes LES	S waste than an E-Factor of 25?
(a)	True			(b) False
Q ⁿ 43. I	Lignin, switch grass, and cellulose are	all types	s of	?
(a)	Enzymes	(b)	Cataly	vsts
(c)	Bio-based feedstock's	(d)	Anti-c	ancer compounds
Q ⁿ 44	is an excellent 'green' solven	ıt as well	as a gro	eenhouse gas?
(a)	Methanol		(b)	CFCs
(c)	Carbon monoxide		(d)	Carbon Dioxide
Q ⁿ 45.	interfere with hormone s	systems	in anim	als and humans and are abbreviated
EDC's	?			
(a)	Endocrine Destructive Components			
(b)	Energy Disrupting Chemicals			
(c)	Endocrine Disrupting Chemicals			
(d)	Enzyme Destructive Components			
Q ⁿ 46. (Green chemistry can provide green tee	chnology	solutio	ns for a sustainable future?
(a)	True			(b) False

Qⁿ47. Soybean is used to replace traditional inks in printer cartridges, highlighting which of the Green chemistry principles?

(a)	Atom economy	(b)	Use of Renewable Feedstock's						
(c)	Reduce derivatives	(d)	Prevent waste						
Q ⁿ 48.]	Q ⁿ 48. Bio-polymers exemplify Green Chemistry Principle # 10, which is?								
(a)Cata	ılysis								
(b)Prev	vent waste								
(c)Ben	ign solvents & auxiliaries								
(d) Des	sign for degradation								
Q ⁿ 49. 7	The use of solar power is covered within Gree	n Chem	istry Pr	inciple #6, which is?					
(a)	Atom economy		(b)	Design for energy efficiency					
(c)	Design benign chemicals		(d)	Less hazardous synthesis					
O150			lomont	af ¢222 million for the California					
Q 50.	was instrumental in winning a 1996 if f Hinkley due to chromium in its drinking wa	egai sett ter?	lement	or \$355 million for the California					
(a)	Leonardo diCaprio		(b)	George Clooney					
(c)	Erin Brockovich		(d)	Angelina Jolie					
(-)			()						
Q ⁿ 51 of the	was a co-founder of the worldwide g Green Chemistry Institute, now part of ACS?	green ch	iemistry	movement and the first director					
(a)	Joseph Breen	(b)	Alber	Einstein					
(c)	John Warner	(d)	Paul A	Anastas					
Q ⁿ 52. dressir	This 'green' chemical is used in household c	leaners	to rem	ove stains and is also a favorite					
(a)	Vinegar (acetic acid)	(b)	Citric	acid					
(c)	Hydrochloric acid (HCl)	(d)	Water						
O ⁿ 53.	An example of green chemistry is?								
(a)	Recycled carpet	(b)	A pro	duct made on Earth Day					
(c)	A sublimation reaction	(d)	Bio-p	lastics					
$Q^{n}54.1$	Biodiesel is an example of which of the 12 Prin	ciples o	of Green	Chemistry?					
(a)	#1 – Waste prevention	(b)	#7 – l	Jse of renewable feedstocks					
(c)	#9 – Use of catalysis	(d)	#5 — S	sater solvents					
Q ⁿ 55.	Green chemistry can reduce all but which of t	he follov	wing?						
(a)	Cost	(b)	Risk &	& Hazard					
(c)	Awareness	(d)	Waste						

Qⁿ56. A 'green' soy adhesive was developed based on the adhesion protein secreted by mussels sticking on rocks?

(a)	True			(b)	False
Q ⁿ 57.	. An example of chemical toxics pre	evention is?			
(a)	Removing water from industrial re	eactions			
(b)	Eliminating the formation of chlor	rinated orgar	nics in p	aper	
(c)	Utilizing ammonia instead of vine	egar			
(d)	Monitoring BPA (Bisphenol A) in	n plastic bott	les		
Q ⁿ 58.	. Green chemistry synthesis could a	lso involve	which o	f the fol	lowing?
(a)	High temperature	(b)	Dich	lorometh	ane
(c)	Fossil fuels	(d)	Micr	owave	
Q ⁿ 59.	. Bio-catalysis has become very use	ful in green	chemis	try man	ufacturing?
(a)	True			(b)	False
Q ⁿ 60.	. TRI is used by the EPA to track p	ollution pre	vention	. TRI sta	ands for?
(a)	Total Reporting Inventory		(b)	Total	Release Impact
(c)	Toxic Release Inventory		(d)	Toxic	c Release Impact
Q ⁿ 61.	.The role of a catalyst is to change _		•		
(a) Gi	ibbs energy of reaction.			(b) En	thalpy of reaction.
(c) A	ctivation energy of reaction.			(d) Eq	uilibrium constant.
Q ⁿ 62.	. In the presence of a catalyst, the h	eat evolved	or abso	orbed du	ring the reaction
(a)	Increases.		(b)	Decre	ases.
(c)	Remains unchanged.		(d)	May i	ncrease or decrease.
Q ⁿ 63.	Activation energy of a chemical rea	action can b	e deter	mined b	у
(a)	Determining the rate constant at st	andard temp	erature.		
(b)	Determining the rate constants at t	wotemperatu	ires.		
(c)	Determining probability of collision	on.			
(d)	Using catalyst.				
Q ⁿ 64.	. Consider the Arrhenius equation giv	ven below an	d mark	the corre	ct option.—Ea /RT $k = A e$

(a) Rate constant increases exponentially with increasing activation energy and decreasing temperature.

(b) Rate constant decreases exponentially with increasing activation energy and decreasing temperature.

(c) Rate constant increases exponentially with decreasing activation energy and decreasing temperature.

(d) Rate constant increases exponentially with decreasing activation energy and increasing temperature.

Qⁿ65. Which of the following statements is not correct about order of a reaction.

- (a) The order of a reaction can be a fractional number.
- (b) Order of a reaction is experimentally determined quantity.
- (c) The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction.
- (d) The order of a reaction is the sum of the powers of molar concentration of the reactants in the rate law expression.

Qⁿ66.Which of the following statements is correct?

- (a) The rate of a reaction decreases with passage of time as the concentration of reactants dereases.
- (b) The rate of a reaction is same at any time during the reaction.
- (c) The rate of a reaction is independent of temperature change.
- (d) The rate of a reaction decreases with increase in concentration of reactant(s).

Qⁿ67.Rate law for the reaction A + 2B $\frac{3}{4} \rightarrow C$ is found to be Rate = k [A][B]

Concentration of reactant 'B' is doubled, keeping the concentration of 'A' constant, the value of rate constant will be_____.

(a)	the same	(b)	doubled
(b) ((c) quadrupled	(d)	halved

Qⁿ68.Which of the following statements is incorrect about the collison theory of chemical reaction?

- (a) It considers reacting molecules or atoms to be hard spheres and ignores their structural features.
- (b) Number of effective collisions determines the rate of reaction.
- (c) Collision of atoms or molecules possessing sufficient threshold energy results into the product formation.
- (d) Molecules should collide with sufficient threshold energy and proper orientation for the collision to be effective.

Qⁿ**69**.Which of the following statement is not correct for the catalyst?

- (a) It catalyses the forward and backward reaction to the same extent.
- (b) It alters DG of the reaction.
- (c) It is a substance that does not change the equilibrium constant of a reaction.
- (d) It provides an alternate mechanism by reducing activation energy between reactants and products.

Qⁿ70.The value of rate constant of a pseudo first order reaction ______.

- (a) Depends on the concentration of reactants present in small amount.
- (b) Depends on the concentration of reactants present in excess.
- (c) It independent of the concentration of reactants.
- (d) Depends only on temperature.

Qⁿ71. Rate law cannot be determined from balanced chemical equation if ______.

(a) Reverse reaction is involved.
(b) It is an elementary reaction.
(c) It is a sequence of elementary reactions.
(d) Any of the reactants is in excess.

Qⁿ72. Which of the following statements are applicable to a balanced chemical equation of an elementary reaction?

- (a) Order is same as molecularity. (b) Order is less than the molecularity.
- (c) Order is greater than the molecularity. (d) Molecularity can never be zero.

Qⁿ73. In any unimolecular reaction ______.

- (a) Only one reacting species is involved in the rate determining step.
- (b) The order and the molecularity of slowest step are equal to one.
- (c) The molecularity of the reaction is one and order is zero.
- (d) Both molecularity and order of the reaction are one.

Qⁿ74. For a complex reaction ______.

- (a) Order of overall reaction is same as molecularity of the slowest step.
- (b) Order of overall reaction is less than the molecularity of the slowest step.
- (c) Order of overall reaction is greater than molecularity of the slowest step.
- (d) Molecularity of the slowest step is never zero or non interger.

Qⁿ75. At high pressure the following reaction is zero order. $2NH3(g) \rightarrow 1130$ Pt catalyst N2(g) + 3H2(g)

Which of the following options are correct for this reaction?

- (a) Rate of reaction = Rate constant
- (b) Rate of the reaction depends on concentration of ammonia.
- (c) Rate of decomposition of ammonia will remain constant until ammonia disappears completely.
- (d) Further increase in pressure will change the rate of reaction.

Qⁿ76. During decomposition of an activated complex

- (a) Energy is always released
- (b) Energy is always absorbed
- (c) Energy does not change
- (d) Reactants may be formed

Qⁿ77. According to Maxwell Boltzmann distributon of energy, _____.

- (a) The fraction of molecules with most probable kinetic energy decreases at higher temperatures.
- (b) The fraction of molecules with most probable kinetic energy increases at higher temperatures.
- (c) Most probable kinetic energy increases at higher temperatures.
- (d) Most probable kinetic energy decreases at higher temperatures.

Qⁿ78. In the graph showing Maxwell Boltzman distribution of energy, ______.

- (a) Area under the curve must not change with increase in temperature.
- (b) Area under the curve increases with increase in temperature.
- (c) Area under the curve decreases with increase in temperature.
- (d) With increase in temperature curve broadens and shifts to the right hand side.

Qⁿ79. Which of the following statements are in accordance with the Arrhenius equation?

- (a) Rate of a reaction increases with increase in temperature.
- (b) Rate of a reaction increases with decrease in activation energy.
- (c) Rate constant decreases exponentially with increase in temperature.
- (d) Rate of reaction decreases with decrease in activation energy.

Qⁿ80. Mark the incorrect statements.

- (a) Catalyst provides an alternative pathway to reaction mechanism.
- (b) Catalyst raises the activation energy.
- (c) Catalyst lowers the activation energy.
- (d) Catalyst alters enthalpy change of the reaction.

Answer

1	2	3	4	5	6	7	8	9	10
a	b	с	d	d	b	d	a	b	С
11	12	13	14	14	16	17	18	19	20
b	b	С	a	d	d	b	С	a	a
21	22	23	24	25	26	27	28	29	30
b	d	С	b	a	С	С	b	d	a
31	32	33	34	35	36	37	38	39	40
b	С	a	d	b	a	d	d	С	b
41	42	43	44	45	46	47	48	49	50
a	a	с	d	c	a	b	d	b	с
51	52	53	54	55	56	57	58	59	60
d	a	d	b	c	a	b	d	a	С
61	62	63	64	65	66	67	68	69	70
С	С	b	d	c	a	b	С	b	b
71	72	73	74	75	76	77	78	79	80
a,c,d	a,d	a,b	a,d	a,c,d	a,d	a,c	a,d	a,b	b,d

PART 3: MEDICINAL CHEMISTRY

EXERCISE

For PDF please visit our website subject catalogue <u>www.multidipublication.in</u> **Multiple Choice Questions, Choose Appropriate_Alternative Multiple Choice Questions**

Qⁿ1.Antipyretics are medicinal compounds which

(A)	Relieve pain	(B)	Lower	body temperature		
(C)	Control malaria	(D)	Kill other harmful organisms			
Q ⁿ 2.As	spirin is					
(A)	Barbituric acid	(B)	Secona	1		
(C)	Chloroxylenol	(D)	Acetyl	salicylic acid		
Q ⁿ 3.Which of the following is not a tranquillize						
(A)	Barbituric acid	(B)	Secona	1		
(C)	Luminal	(D)	Phenacetin			
Q ⁿ 4.W	hich of the following is not an antibioti	c				
(A)	Chloramphenicol	(B)	Sulpha	liazine		
(C)	Penicillin	(D)	Bithional			
Q ⁿ 5.2-	Acetoxy benzoic acid is					
(A)	Antiseptic	(B)	Antipy	retic		
(C)	Antibiotic d	(D)	Mordar	nt dye		
Q ⁿ 6.W	hich of the following is not an antipyre	tic				
(A)	Paracetamol	(B)	Aspirin			
(C)	Chloramphenicol	(D)	Phenac	etin		
Q ⁿ 7.Cl	hloramphenicol is					
(A)	Antipyretic		(B)	Broad spectrum antibiotic		
(C)	Azo dye		(D)	Tranquillizer		

Qⁿ8.Aspirin is a

(A)	Narcotic	(B)	Antipyretic				
(C)	Antimalarial	(D)	Antiseptic				
Q ⁿ 9.Which of the following is used as an antioxidant in food							
(A)	Saccharin		(B)	Methylated hydroxyl anisole			
(C)	Ormeloxifene		(D)	Cochineal			
Q ⁿ 10.S	ulphonamides act as						
(A)	Hyponotics		(B)	Antidepressants			
(C)	Antimicrobials		(D)	Antiseptics			
Q ⁿ 11.P	rogestogens and estrogens are used as						
(A)	Antacids		(B)	Antifertility drugs			
(C)	Antimicrobials		(D)	Antibiotics			
Q ⁿ 12.B	enadryl is used as						
(A)	Antiseptic		(B)	Disinfectant			
(C)	Analgesic		(D)	Antihistamine			
Q ⁿ 13.V	Which of the following used as preserva	tive to p	protect p	processed food			
(A)	Sodium sulphate		(B)	Saccharin			
(C)	Alitame		(D)	Sodium metalbisulphite			
Q ⁿ 14.N	lifepristone is used as						
(A)	Antimicrobial		(B)	Antimalarial			
(C)	Antifertility drug		(D)	Tranquillizer			
Q ⁿ 15.V	Which of the following is not an artificia	al sweete	ening ag	ent			
(A)	Sucralose		(B)	Alitame			
(C)	Sodium benzoate		(D)	Aspartame			
Q ⁿ 16.Which of the following can possibly be used as analgesic without causing addition and modification							

(A)	Morphine	(B)	N-Acetyl-paraaminophenol
(C)	Diazepam	(D)	Tetrahydrocatenol

Qⁿ17.The following compound is used as

Ć								
(A)	An anti-inflammatory compound	(B)	Analgesic					
(C)	Hypnotic	(D)	Antiseptic					
Q ⁿ 18.Amoxillin is semi-synthetic modification of								
(A)	Penicillin	(B)	Streptomycin					
C)	Tetracycline	(D)	Chloramphenicol					
Q ⁿ 19.2	-Acetoxy benzoic acid is							
(A)	Antiseptic	(B)	Aspirin					
(C)	Antibiotic	(D)	Mordant dye					
Q ⁿ 20.Substance which bring down body temperature are known								
(A)	Antipyretics	(B)	Analgesics					
(C)	Antibiotic	(D)	Hypnotics					
Q ⁿ 21.A	broad spectrum antibiotic is							
(A)	Paracetamol	(B)	Penicillin					
(C)	Aspirin	(D)	Chloramphenicol					
Q ⁿ 22.7	he correct structure of drug Paracetamol is							
(A)	Pending	(B)	Pending					
(C)	Pending	(D)	Pending					
Q ⁿ 23.A	an ester used as medicine is							
(A)	Ethyl acetate	(B)	Methyl acetate					
(C)	Methyl salicylate	(D)	Ethyl benzoate					
Q ⁿ 24 . <i>A</i>	A drug that is antipyretic as well as analgesic is							
(A)	Chlorpromazine hydrochloride	(B)	Paraacetatamidophenol					

(C)	Chloroquin					(D)	Penicillin		
Q ⁿ 25.7	Franquillizers a	re subst	ances us	sed for t	he treat	tment of			
(A) disorde	Cancer ers	(B)	AIDS		(C)	Mental	diseases	(D)	Physical
Q ⁿ 26.7	The compound i	s used a	S						
(A)	Antiseptic	(B)	Antibio	otic	(C)	Analge	esic	(D)	Pesticide
Q ⁿ 27.Which of the following is not a surfactant									
(A)	A) $CH_3-(CH_2)_{15}N^+(CH_3)_3Br^-$								
(B)	CH_3 -(CH_2) ₁₄ CH_2NH_2								
(C)	CH_3 -(CH_2) ₁₆ $CH_2OSO^-Na^+$								
(D)	OHC-(CH ₂) ₁₄ -CH ₂ COO ⁻ Na ⁺								
Q ⁿ 28.Barbituric acid is used as									
(A)	An antipyretic		(B)	An anti	septic	(C)	An antibiotic		
(D)	Ananalgesic		(E)	A trang	luillizer				
Q ⁿ 29.2	-Acetoxy benzo	oic acid i	s used a	IS					
(A)	Antimalarial				(B)	Antide	pressant		
(C)	Antiseptic				(D)	Antipyretic			
Q ⁿ 30.V	Which of the fol	lowing i	s not a b	oroad sp	ectrum	antibio	tic		
(A)	Tetracycline				(B)	Chloro	mycetin		
(C)	Penicillin				(D)	None of	of these		
Q ⁿ 31 . <i>A</i>	Antipyretics are	the con	pounds	s which					
(A)	Lower the body	y temper	ature			(B)	Relieve pain		
(C)) Control malaria					(D)	none of these		
Q ⁿ 32.V	Which of the fol	lowing t	ypes of	drugs re	educes f	ever			
(A)	Analgesics					(B)	Antipyretics		
(C)	Aspirin					(D)	Tranquillizers		

Qⁿ33.Which of the following is not a broad spectrum antibiotic

(A)	Tetracycline	(B)	Chloromycetin	(C)	Penicillin	(D)	None of these	
Q ⁿ 34.A	mong the following swe	eetener	which one has t	he lowes	st sweetness val	ue		
(A)	Alitame	(B)	Aspartame	(C)	Saccharine	(D)	Sucralose	
Q ⁿ 35.V	Vhich of the following is	s bacteri	iostatic					
(A)	Penicillin	(B)	Erythromycin	(C)	Aminoglycosid	e (D)	Ofloxacin	
(E)	Bithional							
Q ⁿ 36.T	incture of iodine is							
(A)	Aqueous solution of I_2			(B)	Solution of I2 in aqueous KI			
(C)	Alcoholic solution of I ₂			(D)	Aqueous solution	on of KI		
Q ⁿ 37.T	he compound is used a	s	•••••					
(A)	Antiseptic	(B)	Antibiotic	(C)	Analgesic	(D)	Pesticides	
Q ⁿ 38.P	aracetamol is used as							
(A)	Antipyretic	(B)	Analgesics	(C)	Antiseptics	(D)	Antibiotics	
Q ⁿ 39.Which of the following is used as a "morning after pill"								
(A)	Norethindrone			(B)	Ethynylestradio	1		
(C)	Mifepristone			(D)	Bithional			
(E)	Promethazine							
Q ⁿ 40.L	SD (Lysergic acid dieth	ylamid	e) is					
(A)	Sweetening	(B)	Synthetic fibre	(C)	Phychedelic dru	ıg (D)	Antibiotic	
Q ⁿ 41.V	Vhich one of the followi	ng is a c	chromophoric g	roup				
(A)	-N=N-	(B)	-OH	(C)	-SO ₃ H	(D)	-NH ₂	
Q ⁿ 42.V	Vith which of the follow	ing cati	ons, alization w	ill impa	rt a rose red col	lour on	the fibric	
(A)	Fe ³⁺	(B)	Cr^{3+}	(C)	Ba ²⁺	(D)	Al ³⁺	
Q ⁿ 43.2	-acetoxy benzoic acid is	called						
(A)	Antiseptic	(B)	Aspirin	(C)	Antibiotic	(D)	Mordant dye	
Q ⁿ 44.D	Oettol consist of							

(A)	Cresol + ethan	ol			(B)	Xylenol + ter	pinol		
(C)	Chloroxylenol	Chloroxylenol + terpeneol				None of these	;		
Q ⁿ 45.	Which of the fo	llowing	is used in anest	thesia					
(A)	N_2	(B)	N_2O		(C)	CH_2		(D)	CO_2
Q ⁿ 46.	Diazo coupling.	is used	to prepare som	e					
(A)	Vitamin Pesticides	(B)	Proteins		(C)	Dyes		(D)	
Q ⁿ 47.	Which one is br	oad sp	ectrum antibiot	ic					
(A)	Procaine Chlorampheni	(B) col	Plasmoquin		(C)	Aspirin	(D)		
Q ⁿ 48.	Drugs used for	relievin	g pain are calle	d					
(A)	Antibiotic			(B)	Analg	gesics			
(C)	Antipyretics	Antipyretics			Anaes	sthetic			
Q ⁿ 49.	Drug used to th	e body	temperature in	high fev	ver are o	called			
(A)	Antibiotics			(B)	An an	algesic			
(C)	A sedative			(D)	A psy	chedelic drugs			
Q ⁿ 50.	The chemical n	ame of	aspirin is						
(A)	Methyl salicyl	ate			(B)	Ethyl salicyla	te		
(C)	2-hydroxyben:	zoic aci	d		(D)	2-acetoxyben	zoic acid		
Q ⁿ 51.	Which of the fo	llowing	is used as an ar	ntipyret	ic medic	eine			
(A)	Quinine	(B)	Paracetamol		(C)	Luminal	(D)	Morph	nine
Q ⁿ 52.	Among the follo	owing w	hich one is used	l in the	treatme	nt of malaria			
(A)	Aspirin	(B)	Morphine		(C)	Quinine	(D)	Reser	oine
Q ⁿ 53.	Chloroampheni	icol is u	sed as an						
(A)	Analgesic	(B)	Antibiotic		(C)	Anaesthetic	(D)	Antise	ptic
Q ⁿ 54.	.Chloromphenic	al is co	mmonly used in	the tre	atment	of			
(A)	Tuberculosis	(B)	Cholera		(C)	Malaria	(D)	Typho	oid

ONEE CA	• •	• ••	• •
O"55.Strepto	omvcin is	s specific	against
X			

(A) cough	Typhoid	(B)	Tuberculosis		(C)	Malaria	(D)	Whoop	oing
Q ⁿ 56.V	Which of the fol	lowing i	s insecti	cide					
(A)	DDT	(B)	TNT		(C)	TNB	(D)	Aspiri	n
Q ⁿ 57.7	The compound .	•••••	.is used	as					
(A)	Antiseptic	(B)	Antibiotic		(C)	Analgesic	(D)	Pestici	de
Q ⁿ 58. <i>A</i>	A substance whi	ch can a	ict both	as an antiseptio	c and di	sinfectant is			
(A) pentoth	Aspirin (B) Phenol thal			(C)	Analgin	(D)	Sodiur	n	
Q ⁿ 59.V	Which of the fol	lowing i	s a mor	dant					
(A)	Tannic acid				(B)	Metallic hydrox	xide		
(C)	Salts of Al, Cr,	Fe, Sn			(D)	All of these			
Q ⁿ 60.H	Ieroin is deriva	tive of							
(A)	Morphine Caffeine		(B)	Nicotine	(C)	Cocaine		(D)	
Q ⁿ 61.F	Proserpine is								
(A)	Tranquillizer Hormone		(B)	Antibiotic	(C)	Vitamin		(D)	
Q ⁿ 62. <i>A</i>	Ampicillin is								
(A) antipyr	An analgesic retic		(B)	An antibiotic	(C)	An antimalarial	l	(D)	An
Q ⁿ 63 . <i>A</i>	A large numbers	s of anti	biotics l	nave been isolat	ed form	l			
(A)	Bacteria actiur	omycete	5		(B)	Bacteria staphy	lococcus	8	
(C)	Bacteria rhizob	oium			(D)	Acids			
Q ⁿ 64.0	Gammexane is								
(A)	Chlorobenzene				(B)	DDT			
(C)	Benzene hexo	chloride			(D)	None of these			

Q ⁿ 65.V juices,	Vhich of the following i and squashes	s used f	or the preservat	ion of c	olourless food n	naterials	s such as fruit,	
(A)	Potassium metalbisulph	nite		(B)	Sodium sulpha	te		
(C)	Sodium benzoate			(D)	All of the above			
Q ⁿ 66.E	Bebtylated hydroxyanis	ole (BH	A) is widely use	d as				
(A)	Artificial sweetener			(B)	Antioxidants			
(C)	Edible colors			(D)	Preservatives			
Q ⁿ 67.Which of the following contain a nitro group								
(A)	Maritius yellow			(B)	Chloramphenic	ol		
(C)	Benzylpinicillin			(D)	Sulphapyridine			
Q ⁿ 68.Drug which prevent the formation of acid in the stomach is/are								
(A)	Omepyrazoles			(B)	Lansopyrazols			
(C)	Phenylbutazone				Magnesium tris	silicate		
Q ⁿ 69.Non-narcotin analgesics are								
(A)	Phenylbutazone	(B)	Morphine	(C)	Heroin	(D)	Lbuprofin	
Q ⁿ 70.V	Which of the following a	are tran	quillizers					
(A)	Veronal	(B)	Luminal	(C)	Seconal	(D)	All of the above	
Q ⁿ 71 . <i>A</i>	Aspirin cannot be							
(A)	Antibiotic	(B)	Sedative	(C)	Psychedelic	(D)	All of the above	
Q ⁿ 72.V	Which of the following o	an be u	sed as artificial	sweeter	ners			
(A)	Aspartame	(B)	Alifame	(C)	Sucralose	(D)	Saccharin	
(E)	All of the above							
Q ⁿ 73.V	Q ⁿ 73.Which of the following are used as analgesics							
(A)	Aspirin	(B)	Geroin	(C)	Promethazine	(D)	Serotonin	
Q ⁿ 74.V	Which of the following a	are bact	eriostatic antibi	otics				
(A)	Penicillin, Tetracycline			(B)	Erythromycin, Chloramphenicol			
(C)	Oflaxacin, Aminoglyco	sides		(D)	Tetracycline, Chloramphenicol			

Qⁿ75.Which of the following tranquillizers is not derivative of barbituric acid **(B)** (**C**) **(D) (A)** Veronal Equanil Seconal Luminal Qⁿ76.Among the following the narcotic analgesic is **(A)** Heroin **(B)** Lbuprofen **(C)** Naproxen **(D)** Aspirin Qⁿ77.Which of the following are antibacterial Penicillin Sulphapyridine (C) **(A) (B)** Ofloxacin **(D)** All of the above Qⁿ78.Which of the following is narcotics drugs **(A)** Aspirin **(B)** Opium **(C)** Disprin **(D)** Novelgene Qⁿ79.Which can be used as analgesic well as antipyretic **(B) (A)** Aspirin Penicillin **(C)** Alitame **(D)** Codeine

Qⁿ80. Match the following column-I and column-II.

Column-I			Column-II		
А	Penicillin	1	Bacteriostatic		
В	Chloramphenicol	2	Antibiotic		
С	Phenol	3	Bactericidal		
D	Chloroxylenol	4	Antiseptic		
		5	Disinfectant		

- (A) A(2, 3) B(1, 2) C(4,5) D(4)
- (C) A(4) B(1,3) C(2,5) D(5)

Qⁿ81.What is DDT among the following

- (A) Greenhouse gas
- (C) Biodegradable pollutant

Qⁿ82.Aspirin is known as

- (A) Acetyl salicylic acid
- (C) Acetyl salicylate

- **(B)** A(2, 3) B (3) C (4, 5) D(4)
- **(D)** A(3) B(2) C(3,5) D(4,5)
- (**B**) A fertilizer
- (**D**) Non-biodegradable pollutant
- (**B**) Phenyl salicylate
- (**D**) Methyl salicylic acid

Q ⁿ 83.R	Q ⁿ 83.Regular use of which of the following fertilizer increases the acidity of soil							
(A)	Potassium nitrate			Urea				
(C)	Superphosphate of lime			Ammo	nium sulphate			
Q ⁿ 84.T	Q ⁿ 84.The smog is essentially caused by presence of							
(A)	O ₂ and O ₃		(B)	O_2 and	N ₃			
(C)	Oxides of sulphur and nitrogen		(D)	O_2 and	N_2			
Q ⁿ 85.V	Vhich of the following could act as a pr	opellan	t for roc	kets				
(A)	Liquid oxygen + liquid argon			Liquid	hydrogen + liquid oxygen			
(C)	Liquid nitrogen + liquid oxygen			Liquid	hydrogen + liquid nitrogen			
Q ⁿ 86.Several blocks of magnesium are fixed to the bottom of ship to								
(A)	Make the ship lighter			(B)	Prevent action of water and salt			
(C)	Prevent puncturing by under -sea rocks			(D)	Keep away the sharks			
Q^{n} 87.When rain is accompanied by a thunderstorm; the collected rain water will have a p^{H} value?								
(A)	Slightly higher than that when the thunderstorm is not there							
(B)	Un influenced by occurrence of thunder	storm						
(C)	Which depends on the amount of dust in	n air						
(D)	Slightly lower than that of rain water wi	thout thu	understo	rm				
Q ⁿ 88.M	Iorphine is used as an							
(A)	Antipyretic	(B)	Antisep	otic				
(C)	Analgesic	(D)	Insectio	cide				
Q ⁿ 89.V	Vhich of the following is not an alkaloi	d						
(A)	Reserpine	(B)	Morph	ine				
(C)	Quinine	(D)	Phenyl	butazone	2			
Q ⁿ 90.T	he antibiotic used for curing tuberculo	osis is						
(A)	Penicillin	(B)	Strepto	mycin				
(C)	Tetracycline	(D)	Chloro	mycetin				

Q ⁿ 91.T	he drugs used to get re	lief from	pain are call	ed					
(A)	Antipyretics		(B)	Analge	esics				
(C)	Antibiotics		(D)	Antise	ptics				
Q ⁿ 92.A medicine which promotes secretion of urine is called									
(A)	Diuretic		(B)	Antipy	retic				
(C)	Analgesic		(D)	Sedativ	ve				
Q ⁿ 93.T	Q ⁿ 93.The antiseptic action of Dettol is due to								
(A)	Chlorobenzene		(B)	Chloro	oxylenol				
(C)	Chloroquine (D)		Chlora	mphenicol					
Q ⁿ 94.Which of the following is an ingrain dye									
(A)	Alizarin		(B)	Cellitio	on fast blue B				
(C)	Para red (D)			Indigo					
Q ⁿ 95.Which of the following is a direct dye									
(A)	Congo red		(B)	Martiu	s yellow				
(C)	Phenolphthalein (D)		Both (A) and (B)						
Q ⁿ 96.D	yes which are prepared	d right o	n the fabric d	uring dy	eing process are ca	alled			
(A)	Direct dyes		(B)	Azo dyes					
(C)	Disperse dyes		(D)	Basic o	lyes				
Q ⁿ 97.W	Which one is an acidic d	ye							
(A) tree	Methyl orange	(B)	Congo red	(C)	Orange-I		(D)	All the	
Q ⁿ 98.A	day which is obtained	from a l	argely grown	plant in	India is				
(A)	Indigo	(B)	Turmeric	(C)	Malachite green	(D)	Martius	s yellow	
Q ⁿ 99.W	Which of the following is	s a dispe	rse dye						
(A)	Congo red			(B)	Alizarin				
(C)	Butter yellow			(D)	Celliton fast pink	В			
Q ⁿ 100.'	The PSLV rocket used								

(A)	Isoheptane	(B)	n-heptane	(C)	Isooctane	(D)	n-octane	
Q ⁿ 10	1.Octane numl	ber is zei	ro for					
(C) prope	Only biliquid llants	propella	ints	(D)	Both solid and	d biliquid		
(A)	Only solid pr	opellants	5	(B)	Only monoliquid propellants			

Q ⁿ 102.Petroleum is obtained from water gas, na	ame of the reaction involved is-
---	----------------------------------

(A)	Fisher-tropsch	(B)	Bergius	(C)	Dow's	(D)	Kjeldahl's
()	riblier dopben	(2)	Dergrad	(\mathbf{U})	2011 0	(2)	rejoraann 5

1	2	3	4	5	6	7	8	9	10
b	d	d	d	b	с	b	b	b	c
11	12	13	14	15	16	17	18	19	20
b	d	d	с	c	b	b	a	b	a
21	22	23	24	25	26	27	28	29	30
d	b	с	b	с	с	b	е	d	С
31	32	33	34	35	36	37	38	39	40
a	b	с	b	с	с	с	a	с	a
41	42	43	44	45	46	47	48	49	50
a	d	b	с	b	с	d	b	с	d
51	52	53	54	55	56	57	58	59	60
b	С	b	d	b	a	с	b	d	a
61	62	63	64	65	66	67	68	69	70
a	b	a	с	a	b	a,b	a,b	a,d	d
71	72	73	74	75	76	77	78	79	80
d	e	a,b	b,d	b	a	d	b	a	a
81	82	83	84	85	86	87	88	89	90
d	a	d	с	b	b	d	c	d	b
91	92	93	94	95	96	97	98	99	100
b	a	b	С	d	b	d	a	d	d
101	102	103	104	105	106	107	108	109	110
b	a								

ANSWER

PART 4: SUPRAMOLECULAR CHEMISTRY

EXERCISE

For PDF please visit our website subject catalogue <u>www.multidipublication.in</u> Choose Appropriate Alternative

Multiple Choice Questions

Qⁿ.1, Supramolecular chemistry has been defined as...

- a. The study of large molecules
- b. Chemistry beyond the molecule
- c. Chemistry of atoms
- d. The study of covalent bonds

Qⁿ.2, When asked who the forefathers of supramolecular chemistry are/were, which of these would a supramolecular chemist be very unlikely to name?

- a. Jean-Marie Lehn
- b. George Wittig
- c. Charles Pedersen
- d. Donald Cram

Qⁿ.3, Supramolecular chemistry is primarily concerned with...

- a. Non-covalent bonding
- b. Atomic forces
- c. Covalent bonding
- d. Thermodynamics

Qⁿ.4, Upramolecules are very common in nature, which of the following is an example of a supramolecule?

- a. Glucose
- b. Caffeine
- c. Thymine
- d. DNA

Qⁿ.5, Preorganisation is the term that refers to fixing or limiting the geometry of a molecule/s to assist in their binding.

- a. True
- b. False

Qⁿ. 6, Van der Waal's forces are insignificant in supramolecular chemistry due to the fact that they are very weak.

- a. True
- b. False

Qⁿ. 7, Using the appropriate supramolecular host, it is possible to bind which of these guests?

- a. All of these
- b. Cations
- c. Anions
- d. Neutral species

Qⁿ. 8, What type of guest would a crown ether (essentially a cyclic poly ether) be able to bind?

- a. Anions
- b. Zwitterions (a molecule with both a positive and negative charge)
- c. Neutral species
- d. Cations

Qⁿ. 9, There is a lot of interest in the area of supramolecular catalysis at the moment, why is this?

- a. It would be useful for cutting down on the amount of solvent in the reaction and hence decreases costs. This is of particular significance to large scale industrial processes.
- b. It would allow very efficient and stereoselective catalysis of often very difficult reactions.
- c. It is thought that a supramolecular catalyst would be capable of replacing catalytic metals in reactions, thereby reducing cost while increasing efficiency.
- d. There is actually very little interest in this area, due to the fact that it is very difficult to make a supramolecular catalyst.

Qⁿ. 10, The 'lock-and-key' principle states that it is possible to bind any guest if the host is big enough.

- a. True
- b. False

Qⁿ. 11, What is the hybridization state of the central atom in the azide ion, [N3]⁻? That is, what orbital hybridization do we attribute to the central nitrogen atom in this ion?

A. sp^3d^2 B. sp^3d C. sp^3 D. sp^2 E. sp

Q^n . 12, Pi (π) bonds are formed through the overlap of what type of orbitals?

A. s B. p C. sp $D. sp^2$ $E.sp^3$

Qⁿ. 13, Tungsten, W, has the highest melting point of all the metals in the periodic table. Why?

- A. Tungsten has half-filled s and d bands.
- B. Tungsten has the highest effective nuclear charge of all the metals.
- C. Tungsten has the highest electronegativity of all the metals.
- D. Tungsten has the highest atomic weight.
- E. Tungsten has the highest conductivity of all the metals.

Qⁿ. 14, A plot of change in potential energy versus distance for two H atoms combining to form H₂ below. At what point (A, B, C, D or E) is the two-atom system the most stable?

- A. hydrogen bonding
- B. ion-dipole
- C. dipole-dipole
- D. ionic bonding
- E. London dispersion forces

Qⁿ. 16, What intermolecular force is most responsible for molecular iodine, I₂, being a solid at room temperature?

- A. ionic bonding
- B. ion-dipole
- C. dipole-dipole
- D. hydrogen bonding
- E. London dispersion forces

Qⁿ. 17, What intermolecular force is most responsible for sodium chloride, NaCl, being soluble in water?

- a. ionic bonding
- b. dipole-dipole
- c. ion-dipole
- d. hydrogen bonding
- e. London dispersion forces

Qⁿ. 18, Supramolecular chemistry involves the adjusting of weak intermolecular forces to control assemblies of molecules. Which of the following type of interaction is not important in supramolecular chemistry?

- a. hydrogen bonding
- b. ion-dipole
- c. dipole-dipole
- d. ionic bonding
- e. London dispersion force

Qⁿ. 19, Considering likely intermolecular forces, which of the following should have the highest boiling point?

A. CH3-O-CH3	B. CH ₃ CH ₂ SH	C. CH ₃ CH ₂ CH ₃

D. CH₃CH₂OH E. CH₃CH₂CH₂CH₃

Qⁿ. 20, Propyne, H–C C–CH3, has how many sigma (σ) and how many pi (π) bonds?

A.
$$5 \sigma$$
, 3π B. 5σ , 1π C. 3σ , 2π

D. 6 σ, 2 π E. 8 σ, 0 π

Qⁿ. 21, Of the molecules CO₂, NH4⁺, and CO₃²⁻, which has/have delocalized pi (π) bonding?

A.
$$CO_2$$
 and NH_4 B. CO_3^{2-} only C. CO_2 and CO_3^{2-}
D. CO_2 only E. NH_4^+ and CO_3^{2-} END

Qⁿ.22, Binding titrations are most widely used for the determination of host-guest association constants (Ka). Which one of the following statements, in this context, is correct?

- a. Contrary to NMR titration, UV/VIS and fluorescence titrations are employed with weakly binding host-guest complexes.
- b. If the host-guest exchange is fast on the NMR time scale, an integration of peaks assigned to free and bound host and guest species provides concentrations [HG], [H] and [G].
- c. Concerning the concentration range for titrations, the best nonlinear curve fitting is obtained when most of the data points are in the 80-100% saturation binding regime.
- d. The stoichiometry of the host-guest complex can be determined using the method of continuous variations (Job's method).

Qⁿ. 23, Cyclophanes - synthesis and related aromatic hydrocarbons. Which one of the following statements does apply?

- a. The synthesis of thiaphane 3 should be carried out in rather concentrated solution to avoid slow conversion of the precursors 1 and 2.
- b. Cyclophane 4a, one of several product isomers from the above reaction, is chiral.
- c. The inner H-atoms of aromatic annulenes such as 6 show a strong downfield shift in 1H NMR spectroscopy.
- d. Cyclophane 5 is a chiral molecule.

Qⁿ. 24, Principles of cation complexation: which one of the following statements is correct?

- a. Rate constants for complexation and decomplexation [k(compl) and k(decompl)] are determined by the strength of the interaction between cation and crown ether.
- b. The better a binding site is preorganized, the higher the binding selectivity of the corresponding host.
- c. The more basic the donor atoms in ionophores, the stronger their complexes with metal ions.
- d. The ion transport efficiency of a natural ionophore across a membrane parallels the complexation strength.

Qⁿ. 25, Which one of the following statements applies to Suzuki cross-coupling reactions?

- a. The boronates used as starting materials for Suzuki reactions can themselves be prepared in Suzuki-like reactions.
- b. The reactivity of aryl halides in Suzuki reactions is enhanced by elecron-donating substituents at the aromatic nucleus.
- c. Catalytic amounts of base are sufficient by increasing the nucleophilicity of the boronic acid.
- d. Exclusion of water is necessary to avoid poisoning of the Pd catalyst.

Qⁿ. 26, Which one of the following statements is true for anion complexation?

- a. In natural systems, the strongest H-bonds of carboxylate residues involve the anti lone pairs due to stereoelectronic effects.
- b. Glycine plays a distinguished role in the biological binding of phosphate residues.
- c. The ease of anion complexation is reflected by the fact that anions represent ca. 70% of all biological substrates.
- d. Lysine is an essential binding element for phosphate, carboxylate, and sugar binding.

Qⁿ. 27, Which one of the following statements applies to Sonogashira cross coupling reactions?

- a. In the catalytic cycle, the reductive elimination is the rate-determining step.
- b. The formation of homo-coupling products can be suppressed by using a Palladium(II) instead of a Palladium(0) catalyst.
- c. The cleavage of Me3Si protecting groups is a possible side reaction of Sonogashira couplings.
- d. Oxygen (O2) is necessary to accelerate the oxidative addition of a substrate to the Palladium catalyst.

Qⁿ. 28, Which one of the following statements is true for the complexation of neutral molecules in aqueous solution?

- a. Complexation strength of a molecule in water is determined by directional interactions, especially H-bonds.
- b. Preorganization of lipophilic binding sites is essential to achieve binding.
- c. Hydrophilic pockets in enzymes and antibodies are ideal for the binding of Phe, Tyr and Trp residues.
- d. Binding analysis by fluorescence titration provides structural information on the complex.

Qⁿ. 29, Which one of the following statements concerning the chemistry of isonitriles is correct?

- a. A traditional method to prepare isonitriles is the reaction of an alkyl iodide with NaCN.
- b. Due to their high energy content, isonitriles are rather exotic non-natural compounds.
- c. The exothermic oxidation of carbon (II) to carbon(IV) explains the high reactivity of isonitriles.
- d. Nucleophilic attacks on isonitriles take place at the N-atom whereas electrophiles react with the C-atom.

Qⁿ. 30, Which one of the following statements is true for non-covalent interactions involving aromatic rings?

- a. Primary ammonium ions bind particularly well to "aromatic boxes" in proteins.
- b. Edge-to-face interactions are the most favorable ones between aromatics.
- c. Amide-NH... π interactions are stronger than most CH... π interactions and often observed in nature.
- d. As opposed to aryl methyl ethers, aryl trifluoromethyl ethers adopt a dihedral angle C(Ar)C(Ar)OC(F3) of ca. 90°.

Qⁿ. 31, Which one of the following statements is true for hydrogen bonding?

- a. The strength of an H-bond depends on the acidity and basicity of donor and acceptor, respectively.
- b. The position of H-atoms is normally determined by X-ray diffraction.
- c. Nitro groups (NO2) are good H-bond acceptors.
- d. Sulfonamides can be considered isosteres for peptides due to a similar ability to form H-bonds.

Qⁿ. 32, Which one of the following statements is true for carbohydrate bonding?

- a. Carbohydrate binding mainly results from H-bonding interactions between receptor and substrate.
- b. Complexation of OH-groups by ionic amino acid residues such as Asp, Glu or Arg is energetically less favorable than bonding to neutral amino acids.

- c. Participation of an OH-group as both H-bond donor and acceptor leads to weakening of the individual H-bonds.
- d. Water plays an important role in the binding of saccharides by carbohydrate transport proteins.

Qⁿ. 33, Which one of the following statements is true for container molecules?

- a. Carcerand formation is always accompanied by solvent inclusion.
- b. A packing coefficient of 55% (ratio between the guest's van der Waals volume and the interior volume of the capsule) is optimal for complexation involving H-bonding and ion pairing.
- c. The complexation in H-bonded capsules is generally entropy-controlled.
- d. H-bonded capsules accelerate the rate, for example of Diels-Alder reactions, through inclusion of the starting materials inside the capsule.

Qⁿ. 34, Which one of the following statements is true for nanostructures?

- a. In catenane formation, the Pd-pyridine bond is non-labile under normal conditions.
- b. The formation of full helicates from oligo(2,2'-bipyridine) ligands is dependent on the Cu(I) concentration of the solution.
- c. Molecular squares (based on Pd-Py bonding) can be easily formed by exchanging 2 nitrates on Pd for 4,4'-bipyridine ligands.
- d. In halogen bonding, -F, -Cl, -Br and -I act as donors with acceptors such as carbonyls, pyridines and nitriles.

Qⁿ. 35, Force of attraction which is more stronger than dipole dipole forces is

- a. London dispersion forces
- b. Hydrogen bonding
- c. van der Waal forces
- d. inter molecular force

Qⁿ. 36, Covalent bond is stronger than Hydrogen bonding about

- a. thirty times
- b. sixty times
- c. twenty times
- d. seventy times

Qⁿ. 37, Atom which must be present in hydrogen bonding is

- a. hydrogen
- b. sodium
- c. calcium

d. sulphur

Qⁿ. 38, Which one of the following represents the weakest interaction between two species?

- a) Hydrogen bond
- b) Disulfide bond
- c) Ionic bond
- d) Dispersion force

Qⁿ. 39, Non-polar molecules can contain polar bonds. True or false?

a) True

b) False

Qⁿ. 40, Which one of the following terms describes a positive and negative charge, which are separated in space within a molecule?

- a) Salt bridge
- b) Polar bond
- c) Dipole
- d) van der Waals interaction

Qⁿ. 41, Condensation, the transition from gas to liquid, is associated with an increase in intermolecular forces. True or false?

a) True	b) False
/	/

Qⁿ. 42, Polar molecules are most likely to be hydrophobic. True or false?

a) True b) False

Qⁿ. 43, What is the minimum number of hydrogen bonds that operate between base pairs in DNA?

- a) 1 b) 2
- c) 3 d) 4

Qⁿ. 44, Particles that most effects material properties

(a) Neutrons(b) Protons(c) Electrons(d) Valence electrons

Q ⁿ . 45, Mean dista	ance between atoms i	n the range of	
(a) 25 nm	(b) 2.5 nm	(c) 0.25 nm	(d) 0.025 nm
Q ⁿ . 46, Which one	e of the following is n	ot a strong bond?	
(a) van der Waals	bond	(b) Covalent bon	nd
(c) Metallic bond		(d) Ionic bond	
Q ⁿ . 47, Bond strer	ngth of secondary bo	nds is in the range of	
(a) 1 kJ/mol	(b) 10 kJ/mol	(c) 100 kJ/mol	(d) 1000 kJ/mol
Q ⁿ . 48, <i>Electron s</i>	ea exists in		
(a) Polar bonds	(b) Ionic bond	(c) Covalent bond	(d) Metallic bond
Q ⁿ . 49, Repeatable	e entity of a crystal st	ructure is known as	
(a) Crystal	(b) Lattice	(c) Unit cell	(d) Miller indices
Q ⁿ . 50, Coordinat	ion number for close	st packed crystal structure	
(a) 16	(b) 12	(c) 8	(d) 4
Q ⁿ . 51, Atomic pa	acking factor is		
(a) Distance betwee	een two adjacent atoms	8	
(b) Projected area	fraction of atoms on a	plane	
(c) Volume fractio	on of atoms in cell		
(d) None			
Q ⁿ . 52, Coordinat	ion number in simple	e cubic crystal structure	
(a) 1	(b) 2	(c) 3	(d) 4
Q ⁿ . 53, The atomi	c diameter of an BCC	C crystal (if <i>a</i> is lattice para	meter) is
(a) <i>a</i>	(b) <i>a</i> /2	(c) $a/(4/\sqrt{3})$	(d) $a/(4/\sqrt{2})$
Q ⁿ . 54, A family o	f directions is repres	ented by	
(a) (<i>hkl</i>)	(b) <i><uvw></uvw></i>	(c) { <i>hkl</i> }	(d) [<i>uvw</i>]
Q ⁿ . 55, Miller indi	ices for Octahedral p	lane in cubic crystal	
(a) (100)	(b) (110)	(c) (111)	(d) None

Q ⁿ . 5	6, The plane	(1–11) is parallel to		
(a) (-	-11-1)	(b) (-1-11)	(c) (111)	(d) (1–11)
Q ⁿ . 5	7, The angle	between [111] and [11	-2] directions i	n a cubic crystal is (in degrees)
(a) 0		(b) 45	(c) 90	(d) 180
Q ⁿ . 5	8, Miller ind	lices of the line of inter	rsection of (–1–1	1) and (110) are
(a) [1	10]	(b) [101]	(c) [10–1]	(d) [-110]
Q ⁿ . 5	9, Repeatabl	le unit of polymers		
(a) is	omer	(b) copolymer	(c) homopol	ymer (d) mer
Q ⁿ . 6	0, Pick the t	hermo-plast from the f	following	
(a) V	inyls	•	(b) Epoxies	
(c) R	esins		(d) Vulcaniz	ed rubber
Q ⁿ . 6 are o	1, For c coor	dination number of fo	our, anion sits at	the center ofwhere corners
catio	ns			
(a) C	ube		(b) Tetrahed	ron
(c) T	riangle		(d) Octahedr	on
Q ⁿ . 6	2, Layered s	ilicate structures in cla	ays consists the p	following group
(a) S	iO ₄ ⁴⁻	(b) $Si_2O_5^{2-}$	(c) $\text{Si}_{2}\text{O}_{7}^{6-}$	$(d) \operatorname{SiO}_{4}^{4}$
Q ⁿ . 6	3, Schottky-a	<i>lefect</i> in ceramic mate	rial is	
(a) Ir	nterstitial imp	ourity		
(b) V	acancy-inte	rstitial pair of cations		
(c) Pa (d) S	air of nearby ubstitutional	cation and anion vacan impurity	cies	
Q ⁿ . 6	4, what is th	e usual size range of a	Eucaryotic cell	?
a.)	1-2 nm		b.)	1-2 μm
c.)	10- 20 μm	L	d.)	100- 200 μm
Q ⁿ . 6	5, what is a	biosensor made of?		
a)	A probe a	nd a surface	b)	A sensing layer and a transducer
c)	A target a	nd a probe molecule	d)	A biomarker and a probe

Qⁿ. 66, which material is (are) suitable for electrical signal transducing?

- a) PDMS
- c) Glass d) polyethylene

Qⁿ. 67, which cell type is well adapted to signal detection with micro machined transistors?

b)

b)

Silicon

Insulin

- a) Muscle cells b) Hepatocytes
- c) Circulating Tumor Cells d) Neurons

Qⁿ. 68, Please cite 1 anti cancerous agent

- a) Paxlitaxel
- c) Poly (ethylene glycol) d) Polyglutamic acid

Qⁿ. 69, what is the "Enhanced Permeability and retention (EPR) effect?

- a) The retention of the nanoparticules inside the vessel wall
- b) An enhanced permeability of the vessel wall at the tumor site due to an abnormal organization of the endothelium
- c) The enhancement of life time of the nanoparticles in the blood flow
- d) A leaky plasma membrane

Qⁿ. 70, what is the name of the adhesive structures formed by a cell in response to a substrate presenting a nano or Micro topography?

a) Integrins

b) Focal adhesions

c) Actin

d) Lipids

1	2	3	4	5	6	7	8	9	10
b	b	a	d	a	b	a	d	b	b
11	12	13	14	15	16	17	18	19	20
e	b	a	с	a	е	С	d	d	d
21	22	23	24	25	26	27	28	29	30
b	d	d	b	a	b	С	b	С	d
31	32	33	34	35	36	37	38	39	40
a	d	a	с	b	С	a	d	a	с
41	42	43	44	45	46	47	48	49	50
a	b	b	d	с	a	b	d	С	b
51	52	53	54	55	56	57	58	59	60
С	b	С	b	с	а	С	d	d	a
61	62	63	64	65	66	67	68	69	70
b	b	С	с	b	b	d	a	b	b

ANSWER

ART 5: ENVIRONMENTAL CHEMISTRY EXERCISE

For PDF please visit our website subject catalogue <u>www.multidipublication.in</u>

Multiple Choice Questions

Choose Appropriate Alternative

Qⁿ 1. The major air pollutants is

(A)	CO			(B)	Oxid	es of nit	rogen				
(C)	Soot			(D)	Oxides of sulphur						
Q ⁿ 2.	The region closes	st to	earth's	surface							
(A)	Stratosphere			(B)	Meso	osphere					
(C)	Troposphere			(D)	Thee	mosphe	re				
Q ⁿ 3.	The major sourc	e of (C O pol l	lution is	5						
(A)	Industrial proce	esses		(B)	Vehi	cular ex	hust				
(C)	Forest fires			(D)	Volc	anic acti	ivity				
Q ⁿ 4.	Increased concer	ntrat	ion of C	CO2 in a	tmosp	here is	responsible for	ſ			
(A)	Greenhouse eff	ect				(B)	Acid rain				
(C)	Lack of photosy	ynthe	sis			(D)	Death of aqu	atic life			
Q ⁿ 5.	Which of the foll	lowin	g speci	es conta	ining	mercur	y is most toxic				
(A)	CH ₃ Hg ⁺		(B)	HgCl ₂		(C)	Hg ₂ Cl ₂	(D)	Hg metal		
Q ⁿ 6.	Marble acts as a	sink	for								
(A)	Metallic polluta	ants				(B)	NH ₃ pollutar	nts			
(C)	Acidic pollutan	ts				(D)	None of thes	e			
Q ⁿ 7.	Which of the foll	lowin	g oxide	e of nitro	ogen is	s not co	mmon air poll	utant			
(A)	NO ₂	(B)	N_2O		(C)	NO	(D)	N_2O_5			
Q ⁿ 8.	The factor respo	nsibl	e for hi	ghest C	O con	taminat	tion in air is				
(A)	Forest fires			(B)	Vehicu	lar exhau	ıst				
--------------------	---------------------------------	--------------------	-----------------------	------------------------------	------------------	-------------	--------------------	-------------	------------------	--------------------	
(C)	Volcanic ac	ctivity		(D)I	ndustria	l process	es				
Q ⁿ 9.V	Which of the fo	ollowing	g particu	llates is mos	t toxic						
(A)	Fly ash				(B)	Soot					
(C)	Inorganic com	npounds	5		(D)	Smog					
Q ⁿ 10.	Besides CO ₂ , o	other g	reenhous	se gas is							
(A)	CH ₄	(B)	N_2	(C)	Ar			(D)	O_2		
Q ⁿ 11.	Air temperatu	ıre in tı	oposphe	ere decrease	es with h	eight at	rate of	•			
(A)	6.5°C per km			(B)	5.5°C	per km					
(C)	4.5°Cper km			(D)	3.5°C	per km					
Q ⁿ 12.	The fifth zone	of atm	osphere	is							
(A)	Troposphere			(B)	Anthr	osphere					
(C)	Mesosphere			(D)	Ionos	phere					
Q ⁿ 13.	The energy tra and this proc	ansport eeds th	t plays a rough th	vital role in ne mechanis	mainta m of	ining th	e earth	's radi	ation b	alanced	
(A)	Conduction of	f energy	7			(B)	Conve	ction o	f energ	y	
(C)	Re-absorption	of the	outgoing	infrared rad	iation	(D)	All me	chanis	m are ii	nvolved	
Q ⁿ 14.	Gaseous and s	sedimer	ntary cyc	cles are tied	to the						
(A)	Nitrogen cycle	e		(B)	Oxyg	en cycle					
(C)	Hydrological	cycle		(D)	Phosp	horus cy	vcle				
Q ⁿ 15.	The solar ener	rgy rea	ching the	e surface of	earth ea	ich year	is abou	ıt			
(A) kw	2.19×10 ²² kw	r (B)	4×10 ¹⁸	kw	(C)	1.5×10) ²⁰ kw		(D)	5×10 ²²	
Q ⁿ 16.	At equilibriun	n O2/O3	3 ratio is	10 ²⁵ while a	it an alti	tude of a	30km, i	it is			
(A)	3×10 ⁵	(B)	2×10 ⁵	(C)	10 ³⁰			(D)	10 ²⁰		

Q ⁿ 17.	When the envi the atmosphe	ironme re is sa	ntal lap id to be	se rate	and th	e dry a	diabatio	c lapse	rate ar	e exactl	y same,
(A)	Unstable				(B)	Neutra	lly stab	le			
(C)	Super adiabati	c			(D)	Sub ad	liabatic				
Q ⁿ 18.	Sinks of atmos	spheric	gases a	re							
(A)	Ocean and veg	getation			(B)	Soil micro-organisms					
(C)	Lime stone wa	all			(D)	All act as sinks					
Q ⁿ 19.	Particulate ca	n be foi	rmed by	7							
(A)	Dispersion	(B)	Coagul	ation	(C)	Adhesi	ion		(D)	All pro	ocesses
Q ⁿ 20.	At seveso, Ital	y, the d	lisaster	in july	1976, v	vas due	to				
(A)	DDT	(B)	BHC		(C)	TCDD)		(D)	2,4-D	
Q ⁿ 21.	Q^n 21. The photodissociation of O_2 could occur if the wavelength of radiation is										
(A)	< 240nm		(B)	> 240n	m		(C)	280nm		(D)	315nm
Q ⁿ 22.	Temperature i	inversi	on limit	8							
(A)	Vertical mixin	ng of po	llutants			(B)	Horizo	ntal miz	xing of	pollutar	nts
(C)	Photochemica	l smog				(D)	Londo	n smog			
Q ⁿ 23.	Pollutants emi	itted by	jet pla	nes are	<u>;</u>						
(A)	Smoke	(B)	Aeroso	ls		(C)	Smog			(D)	Fog
Q ⁿ 24.	Aerosols of na	tural o	rigin wi	th diar	neter le	ess than	ο 0.2μ a τ	re calle	d		
(A)	Aitken particle	es				(B)	Colloid	dal parti	cles		
(C)	Particulates					(D)	Susper	nsion			
Q ⁿ 25.	Bhopal gas tra	agedy is	s a case	of							
(A)	Thermal pollution					(B)	Air pol	llution			
(C) Nu	C) Nuclear pollution					(D)	Soil po	ollution			

\mathbf{Q}^{n} 26. The dispersion of air pollutants at a particular place are influenced by

(A)	Meteorologica	al factor	S			(B)	Wind speed an	nd wind	l directi	on
(C)	Turbulence					(D)	All of these			
Q ⁿ 27.	The value of a	diabati	c lapse	rate for	r dray :	air abo	ut			
(A)	10°C / km km		(B)	6.5°C /	km	(C)	15°C / km		(D)	4.5°C /
Q ⁿ 28.	For many air	pollutio	on episo	odes in t	he wor	ld, the	major respons	sible fa	ctor is	
(A)	Dispersion of	polluta	nts		(B)	Invers	ion			
(C)	Lapse rate				(D)	Tempe	erature			
Q ⁿ 29.The cleaning of pollutants may take place by										
(A)	Rain out				(B)	Fall ou	ut			
(C)	Wash out				(D)	All				
Q ⁿ 30.When the atmosphere is very stable, the gaseous effluent forms a										
(A)	Fanning plume(B)				(B)	Trappi	ing			
(C)	Coning				(D)	Loftin	g			
Q ⁿ 31.	When strong l observed plux	lapse ra me is	ite occu	ırs at th	e lowei	r layers	s and inversion	in upp	er laye	rs, the
(A)	Coning	(B)	Fumig	atin		(C)	Looping	(D)	None	of these
Q ⁿ 32.	When super a	diabati	c lapse	rates oc	ccur, lo	oping]	plumes are obs	served l	because	•
(A)	Turbulence is	more m	nechanic	cal than	therma	1				
(B)	Of the develop	pment o	f large	thermal	eddies	in the u	instable air			
(C)	Rapid upward	l diffusi	on							
(D)	D) Inversion layers									
Q ⁿ 33.	Q ⁿ 33.The inversion which results from the normal diurnal cooling cycle is									
(A)	Radiational			(B)	Subsid	lence				
(C)	Advective			(D)	None					

Qⁿ 34.The knowledge of meteorological factor is helpful in

(A)) Location of an industrial plant								
(B)	Design of poll	lution co	ontrol equipme	nt					
(C)	Establishing a	ir quali	ty criteria						
(D)	All are correct	t							
Q ⁿ 35.	The boundarie. known	es betw	een temperatu	ire and	subtro	pical air circu	lation z	iones a	re
(A)	Hadley cell			(B)	Polar	fronts			
(C)	Horse latitude	S		(D)	Polar	zones			
Q ⁿ 36.	.The fuel whicl	h	contains only	one ca	rbon at	tom is			
(A)	CNG	(B)	LPG	(C)	Petrol		(D)	Diesel	l
Q ⁿ 37.	.The alternativ	ve fuel(s	s) is (are)						
(A)	CNG or LPG	(B)	H ₂ fuel	(C)	Biodie	esel	(D)	All of	these
Q ⁿ 38.	.The oxygen ad	lded to	gasoline are						
(A)	Methyl tertiar	y butyl	ether (MTBE)						
(B)	Tertiary butyl	alcohol	l (TBA) and Di	-isoproj	pyl ethe	er (DIPE)			
(C)	Ethyl tertiary	butyl et	her (ETBE0						
(D)	All act as oxy	genates							
Q ⁿ 39.	.The biodegrad	able or	xygenate is						
(A)	MTBE	(B)	C ₂ H ₅ OH		(C)	TBA		(D)	ETBE
Q ⁿ 40.	Compared to vehicles	vehicles	s powered by i	nterna	l combi	ustion engines,	fuel ce	ll powe	ered
(A)	Have high ene	ergy cor	version efficie	ncy					
(B)	Create zero po	ollution							
(C)	Emit CO ₂ and	water v	apour only						
(D)	All is correct								
Q ⁿ 41.	.Green house c	oefficie	ent of the earth	n is					

(A)	1.137	(B)	2.60		(C)	2.27		(D)	3.50	
Q ⁿ 42	2.The region of	atmosj	pheric v	vindow	lies in	the ran	ng of			
(A)	8 μm to 12μm to 20μm	n (B)	7.5µm	to 13µ	m	(C)	4μm to 7.5μ	m	(D)	13µm
Q ⁿ 43	3.The relative i	nstanta	neous r	adiativ	e forci	ng valu	e for CO2 is a	rbitrari	ily fixed	at
(A)	1	(B)	21		(C)	43		(D)	25	
Q ⁿ 44	4.The maximun	n globa	l warm	ing pot	ential i	s of				
(A)	N_2O	(B)	CH ₄		(C)	CFC		(D)	CO_2	
Q ⁿ 4	5.The major sin	ık of ni	trous or	xide is						
(A)	Troposphere	(B)	Strato	sphere	(C)	Ocear	18	(D)	Veget	ation
Q ⁿ 40	6.EI Nino episo	des hav	ve occui	red aft	er ever	·у				
(A)	2 to 7 years	(B)	4 to 10) years	(C)	2 to 5	years	(D)	3 to 8	years
Q ⁿ 47	7.In Antarctica, the ocean in	, a hugo	e chunk	of Lar	sen ice	shelf b	roke looks an	d sheer	ed away	y into
(A)	May 2005		(B)	March	2002	(C)	June 2006	(D)	April	2003
Q ⁿ 48	8.EI Nino is a m	neteoro	logical	phenon	nenon 1	marked	l by			
(A)	Lower atmosp	pheric p	oressure							
(B)	Higher water	tempera	ature							
(C)	Both (A) and	(B)								
(D)	Lower water t	tempera	iture							
Q ⁿ 49	9.Pacific decada	al oscill	ation h	as roug	hly					
(A)	50 year cycle	(B)	20 yea	r cycle	(C)	7 year	cycle	(D)	10 yea	ar cycle
Q ⁿ 50	0.EI Nino is also	o know	n as							
(A)	Infant terrible	:			(B)	Boy to	error			
(C)	Both (A) and	(B)			(D)	La Ni	na			

\mathbf{Q}^{n} 51. The existent of ozone belt around the earth is mainly responsible for filtering out

(A)	Ultraviolet ra	idiation		(B)	Infra 1	red rays			
(C)	Cosmic rays			(D)	Micro	waves			
Q ⁿ 52	.The maximu	m conce	entration of o	zone in 1	the stra	tosphere is			
(A)	5×10^{10} mol cr	m^{-2}		(B)	5×10 ¹	2 mol cm $^{-3}$			
(C)	5×10^{11} mol cr	m^{-2}		(D)	5×10 ⁹	mol cm ⁻³			
Q ⁿ 53	.In stratosphe	ere, the	average thick	mess of o	ozone la	yer is about			
(A)	230DU	(B)	300DU	(C)	250D	U (D) 200DU			
Q ⁿ 54	.Ozone can ab	osorb sh	ort waveleng	gth UV r	adiatio	n in the range			
(A)	200 to 240 m	m		(B)	240 to	o 320 nm			
(C)	320 to 350nn	n		(D)	180 to	o 200nm			
Q ⁿ 55	ⁿ 55.Nuclear explosions produce large quantities of								
(A)	'OH ions			(B)	Cl [•] ior	18			
(C)	NO_X			(D)	SO _X				
Q ⁿ 56	.The zero OD	P Value	e is of						
(A)	HFCs			(B)	CFCs				
(C)	HCFCs			(D)	None	of these			
Q ⁿ 57	.Ozone loss ov	ver Anta	arctica was fi	rst detec	cted in				
(A)	April 1981			(B)	Octub	er 1980			
(C)	May 1980			(D)	June 1	1981			
Q ⁿ 58	.A series of ch	loroflu	oro carbons,	in 1940,	were de	eveloped by			
(A)	Chubachi			(B)	Sherw	vood			
(C)	Du Pont			(D)	Chapr	nan			
Q ⁿ 59	.The ODP of a	a specifi	c chemical ta	ikes into	accoun	ht			
(A)	Reactivity of	species			(B)	Atmospheric lifetime of the species			
(C)	Molar mass of	of the sp	ecies		(D)	All are correct			

Q ⁿ 60.	Chloro fluoro	carboi	ns do no	ot absor	b light	of wav	elength	n above	
(A)	290 nm		(B)	200 nr	n		(C)	170 nm (D)	236 nm
Q ⁿ 61.	The haze is ye	llow in	colour	due to	the pro	esent of			
(A)	NO_2	(B)	SO_2		(C)	$\rm CO_2$		(D)	NH ₃
Q ⁿ 62.	Classification	smog i	s also k	mown a	s				
(A)	Sulphurous sn	nog				(B)	Londo	on smog	
(C)	Both (A) and ((B)				(D)	Photo	chemical smog	
Q ⁿ 63.	Formation of j	photoc	hemica	l smog o	depend	l on			
(A)	Atmosphereic	polluta	ants						
(B)	Vehicular exh	aust							
(C)	Climate, geog	ragphic	c condit	ion and	solar ra	diation			
(D)	All of these								
Q ⁿ 64.	The only sink	of PAN	N is						
(A)	Thermal deco	omposit	tion			(B)	Humi	dity	
(C)	Aerosol					(D)	NO _X		
Q ⁿ 65.	A promising f	ree rad	lical sca	avenger	is				
(A)	Dimethyl hydr	roxylan	nine				(B)	Diethyl hydro	oxyl amine
(C)	Diethyl nitroso	oamine	s				(D)	Nitrobenzene	2
Q ⁿ 66.	Sulphate have	, a gre	en hous	se gas, is	s know	n to cau	ise		
(A)	Climate coolir	ng			(B)	Globa	l warmi	ing	
(C)	Shallow invers	sion			(D)	Thick	fog		
Q ⁿ 67.	While reacting	g with s	sulphyo	dryl gro	ups co	ntained	in pro	teins, PAN act	ts as
(A)	An oxidizing a	agent				(B)	An ac	etylating agent	
(C)	Both (A) and ((B)				(D)	Reduc	cing agent	

Qⁿ 68.Monitoring is helpful in

< A \	T 1 .*		. 1	•	•	1.
(A)	Evaluating	current	trende	1n	91r	anality
	Lyanuaring	current	ucius	ш	an	quanty
< /	0					1 2

- (B) Implementing control measures
- (C) Reducing pollutant concentration to acceptable levels
- (D) All are correct statements

Qⁿ 69.The objective of any air sampling exercise is to

- (A) Obtain a genuine and representative sample
- (B) Provide information on the nature of pollutants
- (C) Measure the size of the sample
- (**D**) All of these

Qⁿ 70.The most common technique for sampling particulates is

(A)	Sedimentation	(B)	Filtration	
$\langle \mathbf{O} \rangle$. .		T 1	

(C) Impingement (D) Thermal precipitation

Qⁿ 71.Monitoring program can be classified into

- (A) Ambient monitoring (B) Stack monitoring
- (C) Inplant or personal monitoring (D) All of these

Qⁿ 72.West-Gaeke spectrophotometric method is used for the analysis of

(A) SO_2 (B) NO_x (C) PAHs (D) Aerosols

Qⁿ 73.Total oxidants can be determined in neutral phosphate buffered KI By

- (A) Saltzman method (B) Colorimetric method
- (C) Both (A) and (B) (D) Amperometry

Qⁿ 74.The technique best suited for continuous monitoring of CO from exhaust emission is

(A) NDIR (B) FTIR (C) UV (D) NMR

Qⁿ 75.Low levels of CO (less than 10 ppm) can be conveniently measured by

(A) IR (B) Gas chromatography (C) HPLC (D) UV

Qⁿ 76.The most sensitive method for the monitoring of ammonia is

(A)	Indophenol method	(B)	Nessle	er method			
(C)	Direct method	(D)	Nitrite	method			
Q ⁿ 77.	GC-MS is best suited for the identification	on of low	levels	of			
(A)	Hydrocarbons (B) NH ₃	(C)	O ₃	(D) SO ₂			
Q ⁿ 78.	A typical example of raw materials chang	ge is the					
(A)	Use of raw sulphur fuel in place of high su	lphur on	es				
(B)	Reduction of formation of NO _X						
(C)	Substituted of bauxite flux by fluorspar						
(D)	All of these						
Q ⁿ 79.	The basic mechanism of removing partic	ulate ma	atter fro	om gas streams may i	involve		
(A)	Gravitational settling	(B)	Inertia	l impaction			
(C)	Diffusion or electrostatic precipitation	(D)	All me	echanisms are involve	d		
Q ⁿ 80.	Small size particles can be removing with	ı high ef	ficiency	y by			
(A)	Fabric filters and high energy scrubbers						
(B)	Electrostatic precipitators						
(C)	Both (A) and (B)						
(D)	Gravitational setting chambers and cyclone	e separat	ions				
Q ⁿ 81.	The choice of fabric filters is based on						
(A)	Operation temperature						
(B)	Corrosiveness of the particles						
(C)	Both (A) and (B)						
(D)	Interception						
Q ⁿ 82.	A bag filter is not suitable for						
(A)	Flyash from coal burning		(B)	Radioactive fumes			
(C)	Heavy mist from a chemical process		(D)	All of these			

Q ⁿ 83	.Fabric filter offer the	e best choic	e due to					
(A)	Retention of finest pa	articles			(B)	Large size		
(C)	High construction				(D)	Applicability	below 285°C	
Q ⁿ 84	.Venturi scrubbers a	re particula	rly suitabl	e when	the pa	rticulate matt	er is	
(A)	Sticky		(B)	Flamn	nable			
(C)	High corrosive		(D)	All of	these			
Q ⁿ 85	Catalytic combustion	n technique	is recomn	nended	for gas	es that are fre	ee of	
(A)	NO _X		(B)	Partice	ulates o	r metallic com	ponents	
(C)	SO_2		(D)	CO				
Q ⁿ 86	A effective means of	removing H	H ₂ O, thiop	hene ar	nd mero	captans from o	crude oil is by	
(A)	Washing the oil with	aqueous soo	da solution					
(B)	Treating the oil with sodium carbonate							
(C)	Reacting the oil with sodium sulphite							
(D)	Washing the oil with	sodium sulj	phate					
Q ⁿ 87	.Hydrocarbon emissi	ons from sta	ationary so	ource ca	an be c	ontrolled by		
(A)	Incineration		(B)	Adsor	ption ar	nd absorption		
(C)	Condensation		(D)	All of	these			
Q ⁿ 88	.We get our supply a	nd reserves	of fresh w	ater fro	om			
(A)	Gydrological cycle	(B) Ca	rbon cycle	(C)	Snow	fall (D)	Nitrogen cycle	
Q ⁿ 89	.Of the total water re	source, fres	sh water av	vailable	for ou	r is		
(A)	Less than 5% (B)	Less than	1% (C)	More	than 10	% (D)	More than 7%	
Q ⁿ 90	.Ocean water,a vast v	vaterb reso	urce, is					
(A)	Suitable for agricultu	ire						
(B)	Useful for coastal ve	getation						
(C)	Unfit for human cons	sumption						

(**D**) All of these

Q ⁿ 91	l.Turbidity in	water n	nay be c	chechec	l by coa	agulants such as			
(A)	Ferric chlorie	de		(B)	Ferric	sulphate			
(C)	Ferric alum			(D)	All ca	in be used			
Q ⁿ 92	2.Ground wate	er conta	ins app	reciabl	e conce	entration of			
(A)	Ca ²⁺	(B)	NO ₃ ⁻		(C)	Cl⁻	(D)	Mg^{2+}	
Q ⁿ 93	3.If lunatic sub acidified, th	ostance i e produ	is extra cts are	cted wi	th a str	ong base and the res	sulting s	solution	
(A)	Humin				(B)	Humic acid			
(C)	Fulvic acid				(D)	All of the above			
Q ⁿ 94	4.The decompo	The decomposition products of humic acid are							
(A)	Catechol				(B)	Syringaldehyde			
(C)	Both (A) and	l (B)			(D)	Resorcinol			
Q ⁿ 95	5.Micro-organ	ism tha	t serve a	as aqua	tic sola	ar fuel cells are called	1		
(A)	Algae				(B)	Bacteria			
(C)	Fungi				(D)	Protozoa			
Q ⁿ 90	6.Water that a	cts as h	ypotoni	c medi	um for	aquatic organisms is	5		
(A)	Sea water				(B)	Fiver or lake water			
(C)	Pond water				(D)	Ground water			
Q ⁿ 97	7.The bacteria	that ser	rve as ca	atalyst	for the	oxidation Fe(II) to H	e (III)	by oxygen is/are	
(A)	Gallionella				(B)	Ferrobacillus			
(C)	Sphaerotilus				(D)	All of these			
Q ⁿ 98	8.The sympton	ns of an	y water	body p	ollutio	on are			
(A)	Bad taste of	drinking	, water						
(B)	Offensive smell from lakes, rivers and ocean beaches								

- (C) Oil and grease floating on water surface
- (**D**) All are indicative of water pollution

Qⁿ 99.Arsenic poisoning from drinking water leads to

- (A) Bronchitis, loss of hair, gangrene
- (**B**) Diarrhea, dysentery
- (C) Typhoid
- (D) Pheumonia

Qⁿ 100.Ganga water pollution is due to dumping of

- (A) Waste from forests
- (**B**) Industrial and domestic sewage
- (C) Mine spills
- (D) Transport accidents

ANSWER

1	2	3	4	5	6	7	8	9	10
a	с	b	a	a	c	d	С	b	a
11	12	13	14	15	16	17	18	19	20
a	b	d	с	a	a	b	d	d	С
21	22	23	24	25	26	27	28	29	30
a	a	b	a	b	d	a	b	d	a
31	32	33	34	35	36	37	38	39	40
b	b	a	d	с	a	d	d	b	d
41	42	43	44	45	46	47	48	49	50
a	b	a	с	b	a	b	С	a	с
51	52	53	54	55	56	57	58	59	60
a	b	a	b	с	a	b	С	d	a
61	62	63	64	65	66	67	68	69	70
a	с	d	a	b	a	с	d	a	b
71	72	73	54	75	76	77	78	79	80
d	a	С	a	b	b	a	a	d	c
81	82	83	84	85	86	87	88	89	90
С	d	a	d	b	a	d	a	b	c
91	92	93	94	95	96	97	98	99	100
d	a	d	с	a	b	d	d	a	b

Qⁿ 1.The main objective of Ganga Action Plan is to

- (A) Establish self-sustaining sewage treatment plans system
- (B) Adopt biological conservation measures
- (C) Both (A) and (B)
- (**D**) Mixing with rain water

Qⁿ 2.In case of river water, acute pollution problem prevail in

- (A) Hooghyl near Kolkata
- (**B**) Damodar near Durgapur
- (C) Yamuna near Agra and Delhi
- (**D**) All of these

Qⁿ 3.In marine ecosystem, oil is transported mainly by

- (A) Wind currents
- (**B**) Waves and tides
- (C) Both (A) and (B)
- (**D**) Dissolution

Qⁿ 4.The world's first, disastrous consequence of oil spill occurred on

(A)	March 1967			(B)	May 1987				
(C)	April 1968			(D)	June 1970				
Q ⁿ 5.]	Physical effects of oil	in wat	er are						
(A)	Reduction in dissolv	ed oxy	gen		(B)	Reduction in high penetration			
(C)	Smothering		(D)	All of these					
Q ⁿ 6.	Oil spill can be cleand	ed by							
(A)	Dispersion	(B)	Salm	onella	(C)	Plasmodium	(D)	Streptococci	
Q ⁿ 7.]	Microbial that can in	gest dis	spersed	oil dro	plets aı	·e			
(A)	Pseudomonas (B)	Salm	onella	(C)	Plasn	nodium	(D)	Streptococci	

Q ⁿ 8.E	DDT accumulation is about 25000 fo	olds in			
(A)	Gambusiaaffinis	(B)	Blephe	risma	
(C)	Rohu fish	(D)	Trout f	ïsh	
Q ⁿ 9.0	Coal mines discharge considerable q	uantiti	es of		
(A)	H_2SO_4	(B)	Fe(OH)3	
(C)	Both (A) and (b)	(D)	CaCO ₃		
Q ⁿ 10.	The biodegradable detergents is				
(A)	Alkyl benzene sulphonate			(B)	Linear alkyl sulphonate
(C)	Lauryl sulphate			(D)	Both (B) and (C)
Q ⁿ 11.	BOD is directed measure of				
(A)	Oxygen requirement			(B)	Organic matter
(C)	Microbial activity			(D)DO	level
Q ⁿ 12.	Pesticide are used to				
(A)	Favour growth of insects	(B)	Kill pe	sts and	boost agricultural production
(C)	Reduction production of crops	(D)	Contro	l anima	ls
Q ⁿ 13.	Hormone weed killers are				
(A)	2, 4-D and, 4,5-T	(B)	DDT a	nd BHC	2
(C)	Lindane	(D)	Endrin		
Q ⁿ 14.	Organochlorine insecticides have th	ne grea	test biol	ogical	magnification because they
(A)	Have high affinity for lipids			(B)	Are persistent ecopoisons
(C)	Both (A) and (B) proteins			(D)	Have high affinity for
Q ⁿ 15.	Pesticides can be biodegraded by				
(A)	Oxidation			(B)	Reductive dechlorination
(C)	Dehydrochlorination			(D)	All of these

Q ⁿ 16.	Q ⁿ 16.Extreme nervous excitation is caused by										
(A)	DDT	(B)	HCN		(C)	CH ₃ Br	(D)	CH ₂ Cl ₂			
Q ⁿ 17.	Bio-fertilizer,	a boon	for far	mers, includes	5						
(A)	Blue green alg	gae		(B)	Rhizot	oium					
(C)	Azospirillum			(D)	All of	these					
Q ⁿ 18.7	The effluents f	rom fo	o <mark>d indu</mark>	stry consist of							
(A)	Very high BO	D			(B)	Dissolved org	anic ma	itter			
(C)	Suspended org	ganic so	olvents		(D)	All of them					
Q ⁿ 19.7 with N	The process us IaOH is called	ed to r	emove i	natural impuri	ities lik	e greases, wax	tes and	fats by boiling			
А	Scouring		В	Bleaching	С	Merceizing	D	Dyeing			
Q ⁿ 20.7	The bacterium	, Aceto	bactorl	iquefaciens ca	n consu	ime					
А	Fats			В	Azo dy	yes					
С	Proteins			D	Organi	ic matter					
Q ⁿ 21.7	The cellulosic s	solid wa	aste cal	led bagasse ca	n be us	ed					
А	In paper and p	oulp ind	ustry		В	For steam and power generation					
С	Both (a) and (b)			D	In textile industry					
Q ⁿ 22.7	The first know	n India	an distil	lery was estab	lished a	at					
А	Janjmow, Kan	npur			В	Karnataka					
С	Kolkata				D	Hyderabad					
Q ⁿ 23. <i>A</i>	A single unit of	f distill	ery pro	duces							
А	10 litre of spe	nt wash	per litr	e of alcohol							
В	15 litre of sper	nt wash	per litr	e of alcohol							
С	5% yeast slud	ge									
D	10% yeast slu	dge									

Qⁿ24.COD removal efficiency is 90% in case of

- A UASB technology
- B ASBR technology
- C AMBR reactor
- D EGSB reactor

Qⁿ25.The energy from dissolved biomass can be harvested by

- A Microbial fuel cell biotechnology
- B Hydrogen fermentation technique
- C Methanogenic anaerobic digestion based technology
- D All technique can be used

Qⁿ26.Among FBC processes in thermal power plants, the most preferred technology is

- A Circulating fluidised bed combustion
- B Atmospheric fluidised bed combustion
- C Pressurisedfluidised bed combustion
- D All of these

Qⁿ27.Polymers are categorized into

A	Plastics	В	Fibres
С	Elastomers	D	All of these

Qⁿ28.The sewage with 500mg L BOD is called

- A Strong sewage
- B Weak sewage
- C Extremely harmful sewage
- D All of these

Qⁿ29.The extent of sewage treatment requirement mostly depends on the

A Content of suspended solids

В	BOD of the se	wage									
С	Both (A) and ((B)									
D	Inorganic matt	er in th	e sewage								
Q ⁿ 30.I	During seconda	ary tre	atment of s	ewage,	micro	- organi	sms ca	n bring al	oout		
А	Coagulation of	f colloi	dal matter								
В	Oxidation of d	issolve	d organic m	natter to	$\rm CO_2$						
С	Reduction of H	BOD									
D	All of these										
Q ⁿ 31.7	The residual di	ssolved	l inorganic	impuri	ities fr	om the v	vater	can be ren	noved b	у	
А	Ion-exchnge			В	O	kidation					
С	Chlorination			D	Co	oagulatio	n				
Q ⁿ 32.I	For the oxidati	on of 1	mg of carb	oon, the	e dissol	ved oxy	gen re	quired is			
A mg	1 mg	В	2.67 mg		C	3.5	0 mg		D	4.67	
Q ⁿ 33.7	The efficiency of	of trick	ding filter d	lepends	s on						
А	Composition of	of the w	vaste			В	Τe	emperature	and p^{H}		
С	Strength of hy	draulic	loading			D	A	l of these			
Q ⁿ 34.I	Refractory org	anics a	nd toxic m	etals fro	om the	e waste v	vater o	can be rem	loved by	y	
А	Adsorption			В	Pr	ecipitatio	on				
С	Evaporation			D	Di	gestion					
Q ⁿ 35. <i>A</i>	Anaerobic trea	tments	is mainly u	used for	r						
А	COD reduction	n		В	Lu	ıdge dige	estion				
С	Sewage oxidat	tion		D	Metal	reductio	n				
Q ⁿ 36.7	The conversion	of me	rcury to me	ethyl m	ercury	v is facili	itated	by			
А	Methyl cobala	min		В	As	Ascorbic acid					

С	Biotin	Biotin					actic acid				
Q ⁿ 37.]	Most organic F	Pb ente	rs into	the atmos	sphe	ere durii	ng				
А	Manufacture			В	3	Trans	fer of leaded §	gasoline			
С	Use in vehicle	S		Ľ)	All of th	nese				
Q ⁿ 38.	Copper species	s domir	nating i	n fresh w	ater	· is					
А	Cu- fulvic acid	dB				B. Cu- humic acid					
С	Cu ²⁺ and CuC	O ₃				D $CuOH^+$ and $CuHCO_3^+$					
Q ⁿ 39.]	Mercury specie	es whic	ch is ab	sorbed on	l gol	d coated	l glass beads	is			
A	(CH ₃) ₂ Hg		В	Hg°		С	HgCl ₂	D	CH ₃ H	lgCl	
Q ⁿ 40.]	In surface wate	er at hi	igher p ¹	^H values, l	lead	associa	ted with				
А	Fe(OH) ₃		В	MnO_2		С	Both (A) an	d (B)	D	NH ₄ Cl	
Q ⁿ 41.	Speciation of a	rsenic	in wate	er has bee	n co	nducted	l by reduction	n with			
А	Iodide	В	NaBH	[4		С	FeCl ₂	D	All of	above	
Q ⁿ 42.	Cr(III) can be	solubil	ized fol	llowing su	rfa	ce oxida	tion in prese	nce of			
A ions	Fe salts		В	Solid Mr	nO ₂	C	Organic mat	tter	D	NH4 ⁺	
Q ⁿ 43.]	For arsenic me	tabolit	es, the	lower det	ecta	ble limi	t is				
А	10 ⁻⁷ g	В	10-11	g		С	10 ⁻¹⁰ g	D	10 ⁻⁵ g	g	
Q ⁿ 44.7	The analytical	proced	lure (s)	for specia	atio	n of sele	nium is/ are				
A above	Cold trapping	В	AAS			C	Flameless A	AS	D	All of	
Q ⁿ 45	Arsenic speciat	tion in	air san	nple is car	ried	l out usi	ng a				
А	Glass wool file	ter				В	Silver glass	beads			
С	Both (A) and ((B)				D	Platinum glass beads				
Q ⁿ 46.	Soil erosion or	loss of	top soi	l is caused	d by	,					
А	drought and fl	ood				В	Deforestatio	on			

C Agriculture

D Fertilizers

Qⁿ47.Pesticides residues

- A Have no effect on environment
- B Cause harm to birds, mammals and man
- C Are maximum among Indians
- D Increase soil fertility

Qⁿ48.Eutrophication results from

- A Industrial effluents
- B Vehicular exhausts
- C Agricultural run-off and domestic sewage
- D Mining activities

Qⁿ49.Pesticides enter in man through

A	Human food chain	В	Birds
С	Insects	D	Animals

Qⁿ50.Integrated Pest Management in agriculture means

- A Control of pest population
- B Co-ordination of methods supplementing the effects of natural control agents
- C Eradication of pests
- D None of these

Qⁿ51.Compounds more resistant to decomposition in soil are

A Tannins and lignins B Proteins C Lipids D Carbohydrate

Qⁿ52.Mining practices leads to

- A Loss of grazing and fertile land
- B Soil erosion from waste dumps
- C Damage to flora and fauna

D All of above

Qⁿ53.Biopesticides, the ecofriendly pest enemies, are derived from

А	Microbial sources	В	Botanical sources							
C Bioc	chemical sources	D	All of these							
Q ⁿ 54.1	Pheromones are									
А	Extremely selective	В	Biodegradable and non-toxic							
С	Very effective at low application rates	D	All of these							
Q ⁿ 55.1	Love canal dump site									
А	Did not harm the school and local residents									
В	Compelled the authorities to close the school and evacuate the residents of the area									
С	Favoured the growth of vegetation in the area									
D	Consist of harmless constituents									
Q ⁿ 56.The calorific value of India's solid waste varies from										
А	800 to 1500 kcal / kg	В	500 to 700 kcal / kg							
С	200 to 400 kcal / kg	D	100 to 500 kcal / kg							
Q ⁿ 57.8	Solid waste management is best conducted	by								
А	Dumping	В	Incineration							
С	Sanitary land fills	D	Composting							
Q ⁿ 58.1	Hazardous chemical cause									
А	No harm to man									
В	little harm to animals									
С	Metabolic disorders in human bodies									
D	None of these									
Q ⁿ 59.4	Auxiliary operation involved in solid waste	treatm	ent is							
А	Collection, transport and handling	В	Pulverization							

С	Compaction				D	All of these				
Q ⁿ 60.	Solid waste de	compos	sition ir	n solid mostly	carried	l out by				
А	Facultative ba	cteria								
В	Aerobic bacte	eria								
С	Anaerobic bac	cteria								
D	Microaerophi	lic bact	eria							
Q ⁿ 61. micro	The aerobic ar bes is called	nd ther	mophil	ic decomposit	ion of a	organic matter	r preser	ıt in refu	ised by	
А	Incineration	В	Comp	osting	С	Pyrolysis	D	Dump	oing	
Q ⁿ 62.	The technolog	y suital	ole for 1	medical waste	dispos	al is				
A	Autoclaving Incineration	В	Steam	sterisation	С	Both (A) an	d (B)	D		
Q ⁿ 63.	Electronic was	ste inclu	udes dis	scarded						
A these	Computers		В	Televisions	С	Microwave	ovens	D	All of	
Q ⁿ 64.	Mobile phones	contai	n persi	stent bioaccui	nulatio	ve toxic whic	h includ	le		
A	As, Sb, Be, Pt	5		В	Cd, C	Cu, Ni, Zn				
С	Brominated fl	ame ret	ardents	D	All of them					
Q ⁿ 65.	Sanitary land	fill trea	tment	is suitable wh	en					
A	The water tab	le is de	ep							
В	Rainfall is low	v and se	ewage c	an be used for	farming					
С	Both (A) and	(B)								
D	There is nearb	by water	r stream	1						
Q ⁿ 66.	The plant spec	ies exh	ibiting	pest managen	nent pr	operties are				
A	1221	В	1005	С	297		D	485		
0 N /F		_								

Qⁿ67.The yeast grown as the source of single cell proteins is

А	Aulosira	В	Candida tropicalis
С	Nostoc	D	Anabaena
Q ⁿ 68.7	The ecofriendly techniques for susta	ainable	framing system ia / are
А	Biotechnology	В	Biosensor
С	Bioremediation	D	All of them
Q ⁿ 69.1	Pentachloro phenol from contamina	ted soi	l can be removed by
А	Flavobacterium		B Pseudomonas
С	Thiobacillus		D None of them
Q ⁿ 70.7	The plasmid which can degrade oxa	ne, hex	ane and decane is
А	CAM Plasmid	В	OCT Plasmid
С	XYL Plasmid	D	NAH Plasmid
Q ⁿ 71.7	The most commonly used biopestici	desour	ces are
А	Azadirachtaindica	В	Baculo virus
С	Trichoderma	D	All of them
Q ⁿ 72.1	Bioremediation- microbial clean up	approa	ach was invented by
А	C.M. Keller	В	M. Robinson
С	Karl Erik	D	Watson
Q ⁿ 73.4 enzym biolog	An analytical gadget comprising of a ne, antibody, hormone, nucleic acid) ical signals into an electrical signals	an imm in con s is calle	obilized layer of a biological material (e.g junction with a transducer which converts ed
А	Biosensor	В	Chemosensor
С	Bio- informatics	D	All of them
Q ⁿ 74.1	Phenol, pyridines and dimethylamir	nes in so	olid can be degraded by
А	Norcardia	В	Pseudomonas

D

Acetobactor

С

Mycobacterium

Qⁿ75.The recent most radio resistant genetically engineered bacterium to consume ionic mercury and toluene from nuclear waste is

А	Deinococcusi		В	Oph	Ophiostoma							
С	Rhodotorula				D	Plas	mid					
Q ⁿ 70	6.The factors af	fecting	g soil fe	rtility a	re							
А	Climatic				В	Edaj	Edaphic					
С	Agronomic				D	All						
Q ⁿ 7 7	7.Olsen method	is use	d to det	ermine								
А	Total phosphe	orus			В	Tota	ıl nitrog	;en				
С	Total sulphu		D	Tota	ıl ammo	onia						
Q ⁿ 78	8.In colorimetri	c Pala	skar me	ethod								
А	Sulphur is ext	tracted	l in BaC	l2 soluti	on							
В	Sulphur from soil is extracted in 0.15% CaCl ₂ solution											
С	Sulphur from soil is extracted in H ₂ SO ₄											
D	All											
Q ⁿ 79 of).Trace amount	s of po	otassiun	n can be	e deter	mined	by flar	ne photo	metry	at a wa	velength	
А	589 nm	В	290 n	m		С	766.5	5 nm		D	450 nm	
Q ⁿ 8 conc	0.By flame photentiation of ele	tomet ment	ry, the i	ntensity	y of lig	ht at 58	89 nm i	s nearly	propo	rtional (to the	
A Mg	Na		В	K			C	Ca			D	
Q ⁿ 8 1	1.Spectrophotor	netric	Nessler	r metho	d is us	eful for	r NH3 -	- N upto				
А	10 ppm	В	5 ppm			С	4 pp	m	D	4 ppm		
Q ⁿ 82	2.The plarograp	ohic m	ethod is	s not de	sirable	e for D	O analy	vsis in				
А	Domestic wate	r			В	Industrial waste water						
С	Both (a) and (b))			D	Agricu	Agricultural water					

Qⁿ83.Soil moisture can be measure by

Α	Electricity conductivity	y meth	od		В	Tensitometric metho	d
С	Neutron scattering meth	nod			D	All	
Q ⁿ 8	34.Kjeltec auto analyser	meth	od is used to	determin	e		
A	NH_4^+ -N			В	NO	3- N	
С	Organic N			D	NC	02-N	
Q ⁿ 8	35.Precision of the analy	ytic res	sult depends	on the			
A	Method of sample colled	ction					
В	Method of colour meas	uremer	nt				
С	Presence of interfering	ions					
D	All						
Q ⁿ 8	86.Toxic chemials are						
A	Effective enzyme inh	nibitors	5				
В	Hormone inhibitors						
С	Antibody inhibitors						
D	Antigens						
Q ⁿ 8	87.The load of CO in glo	obal at	mosphere is	nearly			
Α	430 million tonnes				В	530 million tones	
С	120 million tonnes				D	250 million tonnes	
Q ⁿ 8	88.In case of minamatae	epidem	iic,the causat	tive agent	ident	ifide was	
A	Mercurousu ion				В	Mercuric ion	
С	Organomercurials				D Ir	norganic mercury	
Qn8	9.Fish concentrates me	thyl b	y a factor of				
A	10^{4}	В	10 ¹⁰		С	10 ⁵ D	107

Qⁿ90.Cyanides in plants is bonded to glycoside known as

А	Strach Fructose	В	Amygo	lalin	С	Cellulose	D	
Q ⁿ 91.F	Fanconi syndrome is o	caused	by high	er levels of				
А	Pb	В	Hg		С	Cd	D	As
Q ⁿ 92.N	Metal fume fiver is ca	used, if	zinc co	ncentration in	n air is	over		
A / m ³	5 mg / m ³		В	10 mg / m ³	С	15 mg / m ³	D	20 mg
Q ⁿ 93.I	Lead inhibits the enzy	me						
А	Amino levulinic acid	dehydra	ise					
В	Pyruvate dehydrogena	ase						
С	Diphosphoglycerate							
D	Amylase							
Q ⁿ 94.7	The threshold limiting	g value	of metł	yl isocyanate	is			
A ppm	0.05 ppm		В	0.02 ppm	С	0.03 ppm	D	0.06
Q ⁿ 95.8	Select the correct stat	ement a	bout ri	cin				
А	Ricin is the deadliest	naturall	y occur	ring bio-warfa	re agent			
В	It is four times more t	oxic that	in cobra	venom				
С	It works asa cytotoxir	1						
D	All statements are cor	rect						
Q ⁿ 96.7	The necessary condition	on for a	n molec	ule to absorb	infrare	d radiation is		
А	Selection rule							
В	Change in dipole mor	nent						
С	Both (A) and (B)							
D	Dielectric constant							

Qⁿ97.The factors that complicate the infrared spectrum of the sample are

А	Overtones							
В	Fermi resonar	nce						
С	Hydrogen bor	nding						
D	All the above							
Q ⁿ 98.7	The technique	best su	iited for cont	inuous moi	nitorin	ng of CO fi	rom exhau	ist emission is
А	NDIR	В	FTIR	C		IR	D	AAS
Q ⁿ 99.]	Flame ionizati	ion dete	ector is 1000 t	times more	sensit	ive than		
А	Electron capt	ure dete	ctor					
В	Thermal cond	luctivity	detector					
С	Thermionic e	mission	detector					
D	Photoionizatio	on detec	ctor					
Q ⁿ 100	ICPAES is su	iperior	to AAS in re	spect of de	termir	nation of		
А	Refractory ele	ements	like P, B, Zr,	U				
В	Heavy metals	such as	s Cu, Cd, Ni					

- С Low concentration of Al and Be
- Lead in petrol D

ANSWER

1	2	3	4	5	6	7	8	9	10
С	d	С	a	d	d	a	a	с	d
11	12	13	14	15	16	17	18	19	20
a	b	a	с	d	a	d	d	a	b
21	22	23	24	25	26	27	28	29	30
с	a	b	a	d	a	d	a	с	d
31	32	33	34	35	36	37	38	39	40
a	b	d	a	b	a	d	b	a	с
41	42	43	44	45	46	47	48	49	50
a	b	с	d	c	a	b	c	a	b
51	52	53	54	55	56	57	58	59	60

a	d	d	d	b	а	b	С	d	а
61	62	63	64	65	66	67	68	69	70
b	С	d	d	с	a	b	d	a	b
71	72	73	74	75	76	77	78	79	80
d	b	a	b	a	d	a	b	С	a
81	82	83	84	85	86	87	88	89	90
b	С	d	a	d	a	b	С	a	b
91	92	93	94	95	96	97	98	99	100
a	С	a	b	d	с	d	a	b	a

Qⁿ1.The sensitivity of neutron activation analysis towards trace analysis of elements is

A $10^{-12} \text{ mole } L^{-1}$ B $10^{-4} \text{ mole } L^{-1}$ C $10^{-5} \text{ mole } L^{-1}$ D $10^{15} \text{ mole } L^{-1}$

Qⁿ2.In cases of FTIR, the scans that can be coadded in the interferometer are

A 20 B 200 C	С	2000	D	20000
--------------	---	------	---	-------

Qⁿ3.Polynuclear aromatic hydrocarbons in an air sample can be analyzed by HPLC using

- A Column packing of zorbax ODS
- B Fluent as methanol / water
- C Column temperature 333 K and U V detection at 254 nm
- D All the above

Qⁿ4.Type of flame used for metal pollutants (Zn, Cd, Hg, and Mn) is

А	Air acetylene	В	Air hydrogen		
С	Nitrogen oxide acetylene	D	None of these		
Q ⁿ 5.7	Гhe transmittance at 1710 cm– 1for	· effluei	nt acids is shown by		
A	Steel mills	В	Oil refineries		
С	Drug industry	D	All of them		
Q ⁿ 6.7	The first laboratory produced radio	nucleu	ıs is		
А	$_{15}P^{30}$ B $_{1}H^{3}$		C 6C ¹⁴	D	90Th ²³²

Q ⁿ 7.T	he dispersion of radio	active	isotopes in	sol	ution c	an be ii	nvestig	ated by		
А	Autoradiography		В		Dialys	is				
С	Electrophoresis		D		All of	them				
Q ⁿ 8.E	lectromagnetic radiati	on of d	ifferent wa	vel	engths	can be	emitte	d by ma	atte by	
А	Chemical reaction		В		Phosph	noresce	nce			
С	Fluorescence		D		All of	them				
Q ⁿ 9.W	hich of the following a	are not	ecological	haı	rmful					
А	Ca-45 or Co-60	В	U-238			С	Cs-13	7	D	Pu-239
Q ⁿ 10.V traces	Which of the following in metabolism	are es	sential cons	stit	uents o	f proto	plasm	and imp	ortant	as
A 137	C-14 and K-42B	Fe-59 a	and Co-60	C	Both (.	A) and	(B)	D	Sr-90 a	and Cs-
Q ⁿ 11.5	Sun pumps a steady str	ream o	f solar radi	iati	on cons	sisting	of			
А	UV and visible light		В		Infrare	d light				
С	Gamma rays		D		All of	them				
Q ⁿ 12.I	Radioisotopes enter the	e envir	onment art	tific	cially th	rough				
А	Release of radioactive	wastes	from nucle	ar p	ower p	lants				
В	Nuclear installation and	d resea	rch laborate	orie	S					
С	Nuclear test follouts									
D	All of them									
Q ⁿ 13.7	The first atom bomb w	as exp	loded in th	e at	tmosph	ere ove	er ill fa	ted		
А	Hiroshima		В		Nagasa	ıki				
С	Bikini island		D		Russia					
Q ⁿ 14.0	Chernobyl-word's wor	st nucl	ear disaste	r 0	ccurre	l on				
А	May 25, 1986				В	April 2	25, 198	5		
С	March 25, 1986				D	Decem	nber 25	1986		

Qⁿ15.The biggest radiation hazard comes from

А	X-rays	В	Cosmi	c rays		С	Micro	waves	D	Alpha	rays
Q ⁿ 16.5	Stack effluents	s from a	ntomic j	power pla	nts co	onsist o	f				
А	H-2, C-14			В		Kr-85,	I-129				
С	Ar-41 Xe-133	5		D)	all of t	hem				
Q ⁿ 17.I	High level radi	ioactive	ewaste	can be inc	corpo	rated i	nto				
А	borosilicate gl	lass or c	eramic	matrix							
В	polycrystallin	e synro	ck								
С	both (a) and (l	b)									
D	steel tanks										
Q ⁿ 18.I	Biomedical wa	stes inc	lude								
А	pathological a	and surg	ical was	ste							
В	chemical and	chemot	herapy v	waste							
С	radioactive wa	aste									
D	organic solver	nts wast	e								
Q ⁿ 19.1	Hazardous wa	ste con	sist of								
А	toxic chemica	ls									
В	sludges from J	petroleu	ım refin	eries and b	olast f	urnaces	8				
С	radioactive wa	aste									
D	All of them										
Qⁿ20. <i>A</i>	All nuclear rea	actors r	ely on								
А	Thorium		В	uranium a	as fue	1	С	tritium	1	D	radium
Q ⁿ 21.7	The methods f	or stora	age and	disposal	of tail	ling are	e site-s	pecific	and dep	end on	
А	topography			В		geolog	у				
С	climatic condi	itions		D)	all of t	hese				

Q ⁿ 22	A uranium mi	ine in C	anada i	s reported to	rely tot	ally on		
А	bacterial leac	hing for	uraniur	n production				
В	fuel fabrication	on						
С	refineries							
D	chemical met	hods						
Q ⁿ 23.7	The largest ur	anium j	produci	ing countries i	in the w	vorld are		
A these	USA	В	South	Africa	C	Canada	D	all of
Q ⁿ 24.4	An average siz	zed nucl	lear pov	wer plant gene	erates e	electricity		
A MW	1000 MW		В	3000MW	C	500 MW	D	200
Q ⁿ 25.4	A secure land	fill						
А	is an essentia	l compo	nent of	hazardous was	te mana	agement plan		
В	should serve	as the re	sting pl	ace for detoxif	ied haz	ardous waste		
С	both (a) and ((b)						
D	should be use	ed as a re	eceptacl	e for untreated	hazard	ous waste		
Q ⁿ 26.7	The heated eff	fluents o	lischar	ged into rivers	s have			
А	reduced conc	entratio	n of diss	olved oxygen				
В	reduction leve	el of CO	2					
С	Increased cor	ncentrati	on of D	0				
D	Increased con	ncentrati	on of C	O_2				
Q ⁿ 27.5	Sources of the	rmal po	ollution	are				
А	nuclear powe	r plants						
В	coal fired pov	wer plan	ts					
С	hydroelectric	power						
D	all of them							

Qⁿ28.The extent to which heated effluents raise the temperature of waste bodies depends on

А	nature of power plants	В	wind conditions
C		D	

C both (a) and (b) D water pollutants

Qⁿ29.The impact of power station on the environment depends on

- A Meteorological condition B its location
- C agriculture and forest land D all of these

Qⁿ30.Thermal pollution in natural streams can be prevented by

- A Using adequate cooling towers or ponds
- B installing chimneys
- C using electronic temperature meter
- D all of them

Qⁿ31.Temperature inversion limits

- A Horizontal mixing of pollutants
- B vertical mixing of pollution
- C photochemical smog
- D all of them

Qⁿ32.Select the correct statements(s) about the thermal springs

- A Thermal springs are the nature's perfect constant temperature laboratories
- B There is mixing of magnetic and meteoric waters below the ground water level
- C world's largest thermal springs are located in Yellow Stone Park, Wyoming, USA
- D all statements are correct

Qⁿ33.Thermal power plants mainly produce

H Hyush D CO C HO_A D Cube	А	fly ash	В	CO	С	NOx	D	CaSO ₄
--------------------------------------	---	---------	---	----	---	-----	---	-------------------

Qⁿ34.Thermal effluents damage biotic life by

А	entrainment								
В	synergism								
С	impingement								
D	all of these								
Q ⁿ 35.	Photosensitive	edetecto	or is used in						
А	lux meter								
В	Dissolved oxy	ygen me	eter						
С	electronic temperature meter								
D	all of these								
Q ⁿ 36.	Speech freque	encies li	e between						
A	200 and 7000	Hz		В	100 and 700Hz				
С	500 and 5000Hz				400 and 4000Hz				
Q ⁿ 37.	Q ⁿ 37.Common scientific acoustic units of noise is								
А	Hz	В	Db	С	Nm ⁻²	D	Wm^{-2}		
Q ⁿ 38.	Sonic boom								
А	produces shock waves moving faster than the speed of sound								
В	is an important aspect of aeroplane noise								
С	is the worst killer of peace than noise								
D	All are correct statements								
Q ⁿ 39.	ⁿ 39.Cassette recorder								
А	can be used for digital recording of sound pressure levels for computer evaluation								
В	gives information regarding the frequency content of a noise								
С	comprises of a microphone coupled to an amplifier								
D	helps in selecting the ear protector								
Q ⁿ 40.'	The extent of l	hearing	impairment depends	s upon					

A	noise intensity them	yВ	freque	ncy	С	time o	f exposi	ure		D	all of
Q ⁿ 41	A normal conv	versatio	n is dor	ne at so	ound lev	vel					
А	80 Db	В	60 Db			С	100 DI	0		D	40 Db
Q ⁿ 42.]	Engineering co	ontrol o	of noise	involve	es						
А	Suppression of the noise at the source							В	path co	ontrol	
С	protection of	the pers	onnel					D	all of t	hem	
Q ⁿ 43.To act as an effective sound insulator, the barrier material should have a superficial mass of at least											
А	9 kg / m ² m ²		В	7 kg /	m ²	С	10 kg /	m^2		D	2 kg /
Q ⁿ 44.Typical sound absorbing materials include											
А	glass fibre these		В	wood	wool sla	abs C	straw s	slabs		D	all of
Q ⁿ 45.The performance of a sound insulating materials is expressed in terms of											
А	noise level in	dex				В	vibrati	on inde	X		
С	sound reduction index D					D	sound coefficient				
Q ⁿ 46.]	Renewable res	sources	of ener	gy incl	ude						
А	Solar energy	В	natural	l gas		С	coal ga	as	D	fossil f	fuels
Q ⁿ 47.In India, the average intensity of solar radiation is											
А	$2.68 \times 10^{24} \text{ J}$	per year					В	2.1 to 2	2.5 Kj p	er cm ²	per day
С	3.65 Kj per cm ² per day						D	3.45 K	j per cn	n ² per d	ay
Q ⁿ 48.'	The conversion	n of oce	an ther	rmal en	ergy in	to elect	rical en	ergy is	about 1	150 MV	V in
А	vizhinjam fisł	ning har	bor				В	kerala			
С	Andaman and Nicobar Islands						D	Japan			
Q ⁿ 49.'	Tidal power p	lants ar	e in ope	eration	in						
А	Russia	В	France	e	С	Nova	Scotia		D	all of t	hem

Q ⁿ 50.7	The world's la	rgest p	roducer of wi	nd gene	ration p	power is			
А	Japan	В	California		С	CIS	D	India	
Q ⁿ 51.7	The world's la	rgest g	eothermal ene	ergy pro	duction	facility exists	near		
A	China B Bhavanagar C Italy					co in US		D	
Q ⁿ 52.7	The solar powe	er conc	ept for produ	cing eleo	etricity	was developed	l by		
А	Charles Abbo	tt in 193	30		В	Charles Rober	rt in 192	25	
С	L.D. Meyers				D	W.H. Wischm	eier		
Q ⁿ 53.7	The ingredient	ts used	for generating	g power	from s	olar ponds are	!		
А	plenty sunshir	ne			В	water and brine			
С	both (a) and (b)			D	water and Mg	SO_4		
Q ⁿ 54.1	Environmenta	l audit	is also known	as					
А	environmenta	l survei	llance						
В	environmenta	l review	1						
С	environmental assurance								
D	all of them								
Q ⁿ 55.7	The first comp	rehens	ive environme	ental leg	islation	in US came in	nto forc	e on	
A	1 st January, 19	970			В	26 January, 19	970		
С	1 st May, 1970				D	15 August, 19	70		
Q ⁿ 56.	Which of the f	followiı	ng gases is not	a green	house	gas?			
(a)	СО	(b)	03	C	(c)	CH4	(d)	H2O vapour	
Q ⁿ 57.	Photochemica	al smog	occurs in wa	rm, dry	and su	nny climate. O	ne of t	he following is	
not an	nongst the con	nponen	ts of photoche	mical sı	nog, id	entify it.			
(a)	NO2	(b)	O3	(c)	SO2	(d)	Unsatu	irated	
hydroc	arbon								

Qⁿ58. Which of the following statements is not true about classical smog?

- (a) Its main components are produced by the action of sunlight on emissions of automobiles
- and factories.
- (b) Produced in cold and humid climate.
- (c) It contains compounds of reducing nature.
- (d) It contains smoke, fog and sulphur dioxide.

Qⁿ59. Biochemical Oxygen Demand, (BOD) is a measure of organic material present in water. BOD value less than 5 ppm indicates a water sample to be ______.

- (a) Rich in dissolved oxygen.
- (b) Poor in dissolved oxygen.
- (c) Highly polluted.
- (d) Not suitable for aquatic life.

Qⁿ60. Which of the following statements is wrong?

- (a) Ozone is not responsible for green house effect.
- (b) Ozone can oxidise sulphur dioxide present in the atmosphere to sulphurtrioxide.
- (c) Ozone hole is thinning of ozone layer present in stratosphere.
- (d) Ozone is produced in upper stratosphere by the action of UV rays on oxygen.

Qⁿ61. Sewage containing organic waste should not be disposed in water bodies because it causes major water pollution. Fishes in such a polluted water diebecause of

- (a) Large number of mosquitoes.
- (b) Increase in the amount of dissolved oxygen.
- (c) Decrease in the amount of dissolved oxygen in water.
- (d) Clogging of gills by mud.

Qⁿ62. Which of the following statements about photochemical smog is wrong?

- (a) It has high concentration of oxidising agents.
- (b) It has low concentration of oxidising agent.
- (c) It can be controlled by controlling the release of NO2, hydrocarbons, ozone etc.
- (d) Plantation of some plants like pinus helps in controlling photochemical smog.

Qⁿ63. The gaseous envelope around the earth is known as atmosphere. The lowest layer of this is extended upto 10 km from sea level, this layer is ______.

(a) Stratosphere (b) Troposphere (c) Mesosphere (d) Hydrosphere

Qⁿ64. Dinitrogen and dioxygen are main constituents of air but these do not react with each other to form oxides of nitrogen because _____.

- (a) The reaction is endothermic and requires very high temperature.
- (b) The reaction can be initiated only in presence of a catalyst.

- (c) Oxides of nitrogen are unstable.
- (d) N2 and O2 are unreactive.

Qⁿ65. The pollutants which come directly in the air from sources are called primary pollutants. Primary pollutants are sometimes converted into secondary pollutants. Which of the following belongs to secondary air pollutants?

- (a) CO (b) Hydrocarbon
- (c) Peroxyacetyl nitrate (d) NO

Qⁿ66. Which of the following statements is correct?

- (a) Ozone hole is a hole formed in stratosphere from which ozone oozes out.
- (b) Ozone hole is a hole formed in the troposphere from which ozone oozesout.
- (c) Ozone hole is thinning of ozone layer of stratosphere at some places.
- (d) Ozone hole means vanishing of ozone layer around the earth completely.

Qⁿ67 Which order for green house gases is truly based on GWP?

(a)	CFC > N2O > CO2 > CH4	(b)	CFC > CO2 > N2O > CH4
(c)	CFC > N2O > CH4 > CO2	(d)	CFC > CH4 > N2O > CO2
Q ⁿ 68.	. Which of the following pollutant canno	ot be degra	aded by natural process?
(a)	DDT	(b)	Nuclear waste
(c)	Heavy metals	(d)	all of the above
Q ⁿ 69.	. Which of the following bacteria are res	sponsible 1	for the Gastrointestinal Disease?
(a)	Ecoli	(b)	S Faecalis
(c)	Both a and b	(d)	S aurous

Qⁿ70. The prescribed upper limit concentration of lead in drinking water is about

(a) 30 ppb (b) 70 ppb (c) 50 ppb (d) 60 ppb

Qⁿ71. What is the range of pH of acid rain?

- (a) More than 5.6
- (b) In between 5.6 to 6.6
- (c) Less than 5.6
- (d) In between 6.00 to 6.66

Qⁿ72. Which of the following statement is inocorrect?

- (a) Taj Mahal is affected by hydrocarbon.
- (b) Building are adversely affected by acid rain.
- (c) Due to acid rain, micro organisms are affected.
(d) Large amount of acid rain decreases soil fertility.

Q ⁿ 73 .	Which of the followin	ig disea	se increase du	e to Gr	een hou	se Gas	es effec	t?	
(a)	Malaria	(b)	Dengue	(c)	Yellow	fever	(d)	All of	the
above.									
Q ⁿ 74.	Which of the followin	g chem	iist associate w	vith Gro	een hous	se Gas	effect?		
(a)	Jean fowier	(b)	Chamberlin	(c)	Swante	Arrher	nius	(d) Bo	oth b and
c									
Q ⁿ 75 .	Which of the followin	ig is use	ed in aerosols?	•	~ ~ ~			~	
(a)	NOx	(b)	Sox	(c)	CFC		(d)	Cox	
Q ⁿ 76.	The Diameter of solid	l dust p	article is						
(a)	10-2 meter	(b)	10-6 meter		(c)	10-4 m	eter	(d)	10-1
meter									
Q ⁿ 77 .	Which of the followin	ng size (of particulate v	will cau	se disea	ses rela	ated to	lungs?	1
(a)	10-2 meter	(b)	10-6 meter	(c)	10-4 m	eter	(d)	10-1 n	neter
0170		•							
$\mathbf{Q}^{\mu}/\mathbf{\delta}$.	Warm humid alimete	rs in							
(a)	warm numic climate								
(0) N (c)	Cool humid climate								
(d)	Both a and b								
(u)									
Q ⁿ 79V	Which of the following	g metal	will pollute wa	ater?					
(a)	Cd	(b)	Na	(c)	Κ		(d)	None	of the
above									
O ⁿ e 0	Which of the followin	a ion io	anaaunaging	for the	formati	on of o	lago in	wotor	0
Q 00.	SO_4^{2-}	(h)	PO_43		ASO ₄ 3		igue m	(d)	CO_{2}^{2}
(u)	504	(0)	1 045	(0)	16045	,		(u)	003
Q ⁿ 81.	Which of the followin	ig techr	niques is/are u	sed to c	ontrol v	vater p	ollutio	1?	
(a)	Adsorption process								
(b)	Ion exchange process								
(c)	Reverse Osmosis								
(d)	All of the above								
Oⁿ8?	The lowest region the	t exten	ds unto the he	ight of	10 to 15	km fr	nm see	اويوا ن	s called?
∀ 0 ² •	ine iowest region tha	ii CAICH	us up to the he	SHUU	10 10 13		Jin sca		, cancui

(a) Troposphere (b) Stratosphere

(c)	Smoke		(d)	None	of the above.		
Q ⁿ 83.	Which of the follo	wing pollu	utants are pres	ent in	troposphere?		
(a) oxides	Smog	(b)	Oxides of Sulp	ohur	(c) Both a	and b	(d) Metal
Q ⁿ 84.	Which one is not a	n Green h	ouse Gas?				
(a)	H2O	(b)	02	(c)	CO2	(d)	03
Q ⁿ 85. atmos	Which of the follo phere?	wing indu	stries will be th	ne bes	t source of proc	lucing	CO in the
(a)	Dyes	(b)	petrochemical	(c)	paper & pulp	(d)	Both b and c
Q ⁿ 86.	Which of the follo	wing is re	sponsible for p	hotoc	hemical Smog?		
(a) above	Sox	(b)	NOx	(c)	Cox	(d)	none of the
Q ⁿ 87.	London Smog is b	uilt-up of					
(a)	Sulphur Oxide and	l particula	te matter of fuel	comb	oustion.		
(b)	Corbon Oxide and	l particulat	e matter of fuel	comb	ustion.		
(c)	Nitrogen Oxide an	d particula	ate matter of fue	l com	bustion.		
(d)	Water Vapour and	particulat	e matter of fuel	comb	ustion.		
Q ⁿ 88.	The region closest	to the ear	rth's surface is				
(a)	Stratosphere	(b)	Mesoshpere	(C)	Troposhpere	(d)	Thermoshpere
Q ⁿ 89.	Which of the follo	wing oxid	es of nitrogen i	s not a	a common air p	olutan	t?
(a)	NO2	(b)	N2O	(c)	NO	(d)	N2O5
Q ⁿ 90.	Depletion of ozone	e layer cau	uses?				
(a)	Blood Cancer	(b)	Bone Cancer	(c)	Lung Cancer	(d)	Skin Cancer
Q ⁿ 91.	Oxides of sulphur	and nitro	gen are import	ant p	ollutants of:		
(a)	Water	(b)	Air	(c)	Soil	(d)	Both c and d
Q ⁿ 92.	Tajmahal is threa	tened by j	pollutant from				
(a)	Nitric oxide	(b)	Carbon oxide	(c)	Sulphur oxide	e (d)	Chlorine

Qⁿ93. Most dangerous metal pollutant of automobile exhaust is ...

(a)	Lead	(b)	Arsenic	(c)	Mercury
Oⁿ94	DDT is				

Q⁻⁻94. DDT 1s __

- An antibiotic (a)
- Biodegradable pollutant (b)
- Non-Biodegradable pollutant (c)
- (d) Nitrogen containing insecticide

Qⁿ95. COD stands for _____

- Chemical oxygen demand (a)
- Controlled oxygen demand (b)
- Clouds causing ozone depletion (c)
- Chlorinated oxygen demand (d)

Qⁿ96. Which of the following will be affected by Smog?

(a)	Rubber	(b)	Building
(c)	Carving	(d)	All of the above

Qⁿ97. The pollutants like SOx, CO and NOx caused for the damage of :

(a)	Throat	(b)	Kidney	(c)	Nervous system	(d)	Hair
loss							

Qⁿ98. The main components of acid rain in the atmosphere are:

- Oxide of sulphur and nitrogen (a)
- Oxide of carbon and nitrogen (b)
- (c) Oxide of phosphorous and nitrogen
- (d) Oxide of Carbon

Qⁿ99. One free radial of chlorine can destroy molecules of ozone

(a) 100	(b) 500	(c) 250	(d) 1000
---------	---------	---------	----------

Qⁿ100. Which of the following is responsible for Green house effect?

Glass roof (b) Aluminium sheet Metallic roof (d) (a) (c) Jute roof

Qⁿ101. Which of the following industry produces the waste of phenolic compounds and suspended solids?

- Petroleum (a) paper & pulp (b) Detergent (c)
- sugar (d)

Q ⁿ 10	2. Which of	the follow	wing in	dustry produce	s the w	aste of	animal	protei	n?	
(a)	Petroleum		(b)	paper & pulp		(c)	sugar		(d)	leather
Q ⁿ 10	3. The sourc	ce of chlr	ofluoro	carbons pollut	ion is					
(a)	Jet air craf	tss		(b)	Refrig	gerators				
(c)	fire exting	uishers		(d)	all of	the abo	ve			
O ⁿ 10	4. In the cor	ning year	rs, skin	realated disord	ers wil	l be mo	ore com	non d	ue to	
(a)	Water poll	ution	,							
(b)	organic wa	aste mater	ial							
(c)	Pollutants	of atmosp	ohere							
(d)	depletion of	of ozone l	ayer							
Q ⁿ 10	5. Which of	the follow	wing is/	are gaseous pol	lutants	5?				
(a)	Carbon		-	(b)	Aeros	sols				
(c)	Dust partic	eles		(d)	Carbo	on mone	oxide			
Q ⁿ 10	6. Which of	the follow	wing co	mponent cause	s water	r pollut	ion?			
(a)	Smog		C	(b)	Sodiu	m chloi	ride			
(c)	algle			(d)	Indus	strial wa	aste			
Q ⁿ 10	7. The majo	r cause o	f air po	llution in big ci	ties is	•				
(a)	Burning of	f coal	•	0						
(b)	Domestic	exhaust								
(c)	Burning of	f cooking	gas							
(d)	Vehicular	exhaust	0							
O ⁿ 10	8. Depletion	of ozone	layer i	n stratosphere :	may ca	use				
(a)	Lung dama	age	·	-	(b)	globa	l warmir	ng		
(c)	Global coo	oling				(d)	skin ca	ancer		
O ⁿ 10	9. Green ho	use effect	t was fir	st described by	· • • •					
(a)	Yues Chau	ivin (b)	Einst	ein (c)	Fouri	ier		(d)	Newt	on
Q ⁿ 11	0. A substar	ice which	a may al	lter environmei	ntal cor	nstituer	nts or ca	use po	ollution	is
calle	d		·					-		
(a)	Radiator		(b)	Pollutant	(c)	Redu	cer	(d)	Decor	nposer
Q ⁿ 11	1. The perce	entage of	total ar	nount of CO pr	·esent i	n atmo	sphere,	due to	o forest i	fires is
(a)	63%	(b)	17%	-	(c)	9.5%	-	(d)	7.4%	

(a)	80%	(b)	86%		(c)	90%		(d)	99.99	%
Q ⁿ 11	3. Acid rain is	s due to	the incr	ease in the cor	centra	ation of	which a	f the fo	ollowin	g in the
atmo	shpere?		(b)	CO2 and CO		502 -		(L)	502	
(a)	03 + N02		(D)	CO2 and CO	(C)	505 a		(a)	502	and NO.
O ⁿ 11	4. Which of th	ne follov	ving is a	solid pollutan	t?					
(a)	Carbon		(b)	Nitric oxide	(c)	Sulph	ır dioxi	de (d)	Carbo	on
monc	oxide		~ /			1				
O ⁿ 11	5. The Green	house e	ffect is a	eaused by						
x (a)	Methane on	lv		(b)	CO2	and SO2				
(C)	CO2.SO2 ar	nd NO2		(d)	CO2.	CFC CH	Hand N	IO2 g		
CH=0	C									
CH=0	J									
Q ⁿ 11	7. Smog is ess	entialy	caused l	by the presence	e of					
Qⁿ11 (a)	7. Smog is ess Oxides of su	entialy Ilphur ar	caused l nd nitrog	by the presence en	e of	(b)	O2 an	d N2		
Qⁿ11 (a) (c)	7. Smog is ess Oxides of su O2 and O3	entialy (Iphur ar	caused l nd nitrog	by the presence en	e of	(b) (d)	O2 an O3 an	d N2 d N3		
Qⁿ11 (a) (c) Qⁿ11	 7. Smog is ess Oxides of su O2 and O3 8. Ozone in th 	entialy alphur ar	caused l nd nitrog sphere	by the presence en is depleted by	e of	(b) (d)	O2 an O3 an	d N2 d N3		
Qⁿ11 (a) (c) Qⁿ11 (a)	 7. Smog is ess Oxides of su O2 and O3 8. Ozone in the CF2 C12 	entialy of a strato	caused l nd nitrog sphere (b)	by the presence en is depleted by C6F16	e of (c)	(b) (d) C6H60	O2 an O3 an CL6	d N2 d N3	(d)	C6F6
Q ⁿ 11 (a) (c) Q ⁿ 11 (a) Q ⁿ 11	 Smog is ess Oxides of su O2 and O3 Ozone in th CF2 Cl2 The basic c 	entialy alphur ar ne strato ompone	caused I ad nitrog sphere : (b) ent of Sr	by the presence en is depleted by C6F16 nog is	e of (c)	(b) (d) C6H60	O2 an O3 an CL6	d N2 d N3	(d)	C6F6
Q ⁿ 11 (a) (c) Q ⁿ 11 (a) Q ⁿ 11 (a)	 7. Smog is ess Oxides of su O2 and O3 8. Ozone in th CF2 Cl2 9. The basic c PAN 	entialy ilphur ar ne strato ompone (b)	caused l ad nitrog sphere = (b) ent of Sr PBN	by the presence en is depleted by C6F16 nog is	e of (c) (c)	(b) (d) C6H60 Ozone	O2 an O3 an CL6	d N2 d N3 (d)	(d) all of	C6F6 these
Qⁿ11 (a) (c) Qⁿ11 (a) Qⁿ11 (a) Oⁿ12	 Smog is ess Oxides of su O2 and O3 Ozone in th CF2 Cl2 The basic c PAN Spraving of 	entialy of alphur ar ne strato ompone (b) f DDT o	caused l ad nitrog sphere : (b) ent of Sr PBN n crops	by the presence en is depleted by C6F16 nog is causes pollutio	(c) (c) (c)	(b) (d) C6H60 Ozone	O2 an O3 an CL6	d N2 d N3 (d)	(d) all of	C6F6 these
Q ⁿ 11 (a) (c) Q ⁿ 11 (a) Q ⁿ 11 (a) Q ⁿ 12 (a)	 Smog is ess Oxides of su O2 and O3 Ozone in th CF2 Cl2 The basic c PAN Spraying of Air and Wat 	entialy of alphur ar ne strato ompone (b) f DDT o er (b)	caused l ad nitrog sphere : (b) ent of Sr PBN n crops Soil a	by the presence en is depleted by C6F16 nog is causes pollutiond air	(c) (c) (c) (c) (c)	(b) (d) C6H60 Ozone Soil ar	O2 an O3 an CL6	d N2 d N3 (d)	(d) all of (d) Cr	C6F6 these ops and

ANSWER

r							1		1
1	2	3	4	5	6	7	8	9	10
a	c	d	a	d	a	d	d	a	с
11	12	13	14	15	16	17	18	19	20
d	d	a	b	a	d	с	a	d	b
21	22	23	24	25	26	27	28	29	30
d	a	d	b	с	a	d	с	d	a
31	32	33	34	35	36	37	38	39	40
b	d	a	d	a	a	b	d	a	d
41	42	43	44	45	46	47	48	49	50
b	d	b	d	с	a	b	С	d	b
51	52	53	54	55	56	57	58	59	60
с	a	с	d	a	a	с	a	a	a
61	62	63	64	65	66	67	68	69	70
с	b	a	с	с	d	с	d	с	с
71	72	73	74	75	76	77	78	79	80
с	a	d	d	с	b	b	с	a	b
81	82	83	84	85	86	87	88	89	90
d	a	с	b	d	b	a	С	d	d
91	92	93	94	95	96	97	98	99	100
b	c	a	с	a	d	с	a	d	a
101	102	103	104	105	106	107	108	109	110
a	d	d	d	d	d	d	d	c	b
111	112	113	114	115	116	117	118	119	120
b	d	d	a	d	b	a	a	d	с

2. FAT	HER			NGLISH			ERS ONLY)														
												0/ 04	Marke	Crada	1							
	3. 5	сно	OL CO	DDE	1	4.	CLASS	5 5.	ROLI	NO.	Per	in La	tage O	R Grade		7.	DATE	OF BIR	RTH		QUE	8. ST
		0		0	6					6		26	00				MM	0	N Y OO	0	PA	SET
B	B		Ĩ	0	Ĩ			Ö	0	0				B		0	00	0		0		
	C	(2)	(2)	(2)	(2)		(2)	2	(2)	(2))(2)(3))(2))(3)	CO	2	(2)	(2)	(2)	(2)(2) (3)(3)	(2)	A	(
E	E		4		4		4		4					E		4	4		$\check{4}$		-	
E G	G	6	6	6	6)	6	6	6	5)(5)(6)		E		6	6		5 6 6	6	В	C
E	H	0		7	7		7		0	7		00	0	H		0	7		00	0	С	(
0	0	0	9	0	9		9	9	9	9				0		9	9		99	9	D	(
K	® [2	TI		D		6	1	V	1	à							
		1	0. MA	RK Y	OUR		VERS \	NITH I	HB PE	INCIL	/ BAI	LL	POIN	T PE	N (BL	UE /	BLACK	()				
		4		6	0	2	26			0			51		0	6		76			0	G
P	P	2		B	Q	6	20		®	0	0	7	52		B	0		77		(B)	0	C G
R	R	3	A	- (B)		0	28	A	B	0			53	A	B	C	0	78	(A)	(B)	©	(1
S	S	4		B	C	0	29	A	B	C	D		54	A	B	C	0	79	A	B	C	(
		5		B	C	D	30		B	C	D		55	A	B	C		80		B	0	(
	\otimes	6	A	B	C	D	31	A	B	C	Ø	4	56	A	B	C	D	81		B	C	(
\otimes	\otimes	7		B	C	D	32	A	B	O	D	-	57		B	C	0	82		B	C	(
N C	()	8	æ	B	©	0	33	A	B	0	0		58	A	B	0		83	A	B	0	(
		9	A		0	0	34	A	B	C	O		59	A	(1)	©		84	AA	(B)	0	(
9. GEN	DER	11	A	B	0	0	36		(8)	0	0		61	A	(B)	0		86	A	B	0	(1
MALE		12	(A)	(B)	0	0	37	(A)	(B)	0	0	1	62	A	(B)	0	0	87	(A)	(B)	0	(1
MALE	0	13	A	B	C	0	38	A	(B)	C	0	F	63	A	B	C	0	88		B	C	(
FEMALE	0	14	A	B	C	D	39	T@	D.	©	TOR	T	64	A	B	©	D	89	A	B	©	(
		15	A	B	C	D	40	۸	B	C	D		65		B	C	D	90	A	B	©	0
		16	A	B	C	0	41	A	B	C	D		66	A	B	C	0	91	A	B	0	(
		17	(A)	(B)	0	0	42		(B)	0	0		67	(A)	(B)	(C)	0	92	 (A) (A)	(B)	(C)	(
		10	(A)	(B)	C	0	43		(B)	0	0		60	(A)	B	C	0	93	A	B	C	(
		20		B	0	0	44		(B)	0	0		70		®	0	0	95		(B)	0	G
STRE	AM	21	A	B	0	0	46	(A)	(B)	0	0		71	A	B	0	0	96	(A)	(B)	0	G
SIRE		22	A	B	C		47	A	B	C	0		72	A	B	C	D	97	A	B	C	(
MATHS	0	23	A	B	C	D	48	A	B	C	D		73	A	B	C	D	98		B	C	C
BIOL OC	VO	24	A	B	©	D	49	A	B	C	D		74	A	B	C	D	99	A	B	©	C
BIOLOG	10	25		₿	C	0	50		B	C	D		75		B	C	0	100		B	C	(

Multidimensional Publications of Chemical Science

Contact person's Name

Multidimensional Publications of Physical Science

Multidimensional Publications of Life Science / Biology

Solved Papers of TIFR

Life Science

Practice Se OMR She

Dated :

BOOKS PUBLISHED BY MULTIDIMENSIONAL PUBLICATIONS

Home About Us v Download v Download Catalogue v Services v Subjects v Society v Membership v Programs v Donate v Contacts

Multidimensional Research Society are going to start some projects / dissertation training courses for 3 or 6 month and one year programs of Physical Science, Ch

Multidimensional Publications and Educational Technical & Research Society

Multidimensional Publications Provides Best Study Material Question banks & Solved Papers, Text & Competitive Books of all Subjects of Science for higher Examination like IIT-JAM, P. Hd. Entrance Exams, CSIR, UGC, DBT, ICAR, NET. JRF, GATE, TIFR, DRDO, BARC, NTPC, NBRC, ONGC, HPLC, Geo Scientist etc.

Multidimensional Educational Technical & Research Society are also Inviting to large Membership of Coaching's Institutes, Schools / Colleges, Laboratory Institutes, Medical centers, Research centers, Educational NGOs / Societies, and who are Graduates able to take membership of the Society.

Multidimensional Publications is a Publisher of Text and Competitive Books of all Subjects of Science for Higher Examinations in Multi Colored and Multidimensional.

INTER DISCIPALINARY TOPICS FOR CHEMICAL SCIENCE

QUESTION BANK For Higher Competitive Exams CSIR-NET/JRF,GATE,TIFR

K.M.AMISH

UNDER **MULTIDIMENSIONAL EDUCATIONAL TECHNICAL & RESEARCH SOCIETY**

अधीन बहुआयामी शिक्षा तकनीकी एवं अनुसंधान समिति

Chemistry in Nanoscience and Technology

Catalyst and Green Chemistry

Medicinal Chemistry

K.M.AMISH

Supramolecular Chemistry

Environmental Chemistry

You Tube Follow Us :

Multidimensional Publication

Book also Available at :

amazon **_flipkart** Regd. Office : B. No. : 05, L No-03, Umar Masjid Kanchana Bihari Marg,

Adil Nagar Near Jagrani Hospital (226022) Lucknow

Branch Office : 03-A/11-Jia Sarai, Arvind Photoshop, (110016), New Delhi

Visit Us : www.multidpublication.in E-mail: multidpublication86@gmail.com

Help Line No:- 05222730211,05222731211